首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jianyong Wu 《Cytotechnology》1996,22(1-3):103-109
Animal cells in suspension culture can suffer severe mechanical damage from bursting gas bubbles or other hydrodynamic force sources. Certain chemical additives in the culture media, particularly some surface-active chemicals, can effectively protect animal cells against such damage. Previously we proposed that the protective effect is associated with the adsorption of the additives in the cell membrane through hydrophobic binding of the surface-active molecules to the membrane. Adsorption of the additives to the cell membrane may lead to decreased hydrophobicity of the cell surface, thus eliminating cell adhesion to bubbles and reducing cell damage from bursting bubbles. In this study, we measured the hydrophobicity of two insect cell lines based on cell adhesion to hydrocarbon phase and its influence by surface-active chemicals, Pluronic F68, a methylcellulose and a polyethylene glycol. The experimental results showed strong support for the aforecited cell protection mechanism.  相似文献   

2.
A study of communication specificity between cells in culture   总被引:15,自引:9,他引:6       下载免费PDF全文
We have examined the specificity of communication between cells in culture by co-culturing cells derived from mammalian, avian, and arthropod organisms. Both mammalian and avian culture cells have similar gap junctional phenotypes, while the insect (arthropod) cell lines have a significantly different gap junctional structure. Electrophysiological and ultrastructural methods were used to examine ionic coupling and junctional interactions between homologous and heterologous cell types. In homologous cell systems, gap junctions and ionic coupling are present at a high incidence. Also, heterologous vertebrate cells in co-culture can communicate readily. By contrast, practically no coupling (0-8%) is detectable between heterologous insect cell lines (Homopteran or Lepidopteran) and vertebrate cells (mammalian myocardial or 3T3 cells). No gap junctions have been observed between arthropod and vertebrate cell types, even though the heterologous cells may be separated by less than 10 nm. In additional studies, a low incidence of coupling was found between heterologous insect cell lines derived from different arthropod orders. However, extensive coupling was detected between insect cell lines that are derived from the same order (Homoptera). These observations suggest that there is little or no apparent specificity for communication between vertebrate cells in culture that express the same gap junctional phenotype, while there is a definite communication specificity that exists between arthropod cells in culture.  相似文献   

3.
The relative sensitivity of two insect cell lines to laminar shear stress was determined, and the protective effect of polymers added to the growth media of two insect cell lines, Trichoplusia ni (TN-368) and Spodoptera frugiperda (SF-9), was evaluated. TN-368 and SF-9 cells were found to be equally sensitive to laminar shear stress. Methylcellulose [0.5% (w/v) Dow E4M Methocel] and dextran [4.5% (w/v)] increased the resistance of suspended cells to lysis due to laminar shear stress by factors of up to 76 and 28, respectively, compared to cells in media without additives. It was observed that the protective effect of Pluronic F-68 was concentration-dependent: 0.2% and 0.3% (w/v) F-68 increased the resistance of SF-9 cells to shear stress by factors of 15 and 42, respectively. However, increasing the concentration to 0.5% did not significantly increase the cells' resistance compared to 0.3% (w/v). F-68 at 0.2% only increased the resistance of TN-368 cells by a factor of 6. It is believed that the protection is a result of the polymer adsorbing to the cell membrane. None of the polymer additives tested had a significant effect on SF-9 or TN-368 growth rate.  相似文献   

4.
A significant degree of cell damage is observed during suspension cell culture with air sparging. Protective agents can be added to the culture medium to protect the cells from damage. It has been observed that cells tend to adhere to air-medium interfaces and cell damage is mainly due to this cell-bubble interaction; protective additives have been found to prevent this cell adhesion to the bubble surfaces. In this article, it is demonstrated that the interfacial tension between the air and medium is related to the effectiveness of the protective additives to prevent adhesion of cells to this interface. Five different types of additives (Pluronic F-68, Methocels, dextran, Polyvinyl alcohol, and polyethylene glycols) were studied in an effort to determine their protective characteristics. Liquid-vapor interfacial tensions of the culture medium, with and without the additives, were measured by two different techniques (maximum bubble pressure method and Wilhelmy plate method). In addition, visualization techniques showed that in the presence of certain protective additives cells do not adhere to the bubble surface. Results obtained from these experiments indicate that the additives which rapidly lower the liquid-vapor interfacial tension of the culture medium also prevent adhesion of cells to the bubble surface. Experiments have also been conducted to determine the number of cells killed due to bubble rupture, and it was observed that this number is related to the amount of cells adhering to the bubble surface. (c) 1995 John Wiley & Sons, Inc.This article is a US Government Work and, as such, is in the public domain in the United States of America.  相似文献   

5.
Bursting bubbles are thought to be the dominant cause of cell death in sparged animal or insect cell cultures. Cells that die during the bubble burst can come from three sources: cells suspended near the bubble; cells trapped in the bubble lamella; and cells that attached to the rising bubble. This article examines cell attachment to rising bubbles using a model in which cell attachment depends on cell radius, bubble radius, and cell–bubble attachment time. For bubble columns over 1 m in height and without protective additives, the model predicts significant attachment for 0.5‐ to 3‐mm radius bubbles, but no significant attachment in the presence of protective additives. For bubble columns over 10 cm in height, and without protective additives, the model predicts significant attachment for 50‐ to 100‐μm radius bubbles, but not all protective additives prevent attachment for these bubbles. The model is consistent with three sets of published data and with our experimental results. Using hybridoma cells, serum‐free medium with antifoam, and 1.60 ± 0.05 mm (standard error) radius bubbles, we measured death rates consistent with cell attachment to rising bubbles, as predicted by the model. With 1.40 ± 0.05 mm (SE) radius bubbles and either 0.1% w/v Pluronic‐F68 or 0.1% w/v methylcellulose added to the medium, we measured death rates consistent with no significant cell attachment to rising bubbles, as predicted by the model. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 468–478, 1999.  相似文献   

6.
Although the insect cell/baculovirus system is an important expression platform for recombinant protein production, our understanding of insect cell metabolism with respect to enhancing cell growth capability and productivity is still limited. Moreover, different host insect cell lines may have different growth characteristics associated with diverse product yields, which further hampers the elucidation of insect cell metabolism. To address this issue, the growth behaviors and utilization profiles of common metabolites among five cultured insect cell lines (derived from two insect hosts, Spodoptera frugiperda and Spodoptera exigua) were investigated in an attempt to establish a metabolic framework that can interpret the different cell growth behaviors. To analyze the complicated metabolic dataset, factor analysis was introduced to differentiate the crucial metabolic variations among these cells. Factor analysis was used to decompose the metabolic data to obtain the underlying factors with biological meaning that identify glutamate (a metabolic intermediate involved in glutaminolysis) as a key metabolite for insect cell growth. Notably, glutamate was consumed in significant amounts by fast-growing insect cell lines, but it was produced by slow-growing lines. A comparative experiment using cells grown in culture media with and without glutamine (the starting metabolite in glutaminolysis) was conducted to further confirm the pivotal role of glutamate. The factor analysis strategy allowed us to elucidate the underlying structure and inter-correlation between insect cell growth and metabolite utilization to provide some insights into insect cell growth and metabolism, and this strategy can be further extended to large-scale metabolomic analysis.  相似文献   

7.
以杆状病毒-昆虫细胞表达系统Bac-to-Bac为模型,就目前存在较多争论的HCV核心蛋白的加工和细胞定位问题进行探讨.根据核心蛋白的亲水性分析结果,设计了三种长度的基因片段(C173、C191和C215),经过PCR扩增、重组转移载体构建、细菌内转座和昆虫细胞转染,获得三种重组病毒(rvBACC173、rvBACC191和rvBACC215)用于表达分析.SDS-PAGE电泳和免疫印迹试验表明,昆虫细胞能够识别核心蛋白第191和192位氨基酸之间的切点并低效率切割;但不能够识别173~191位之间的切点.间接免疫荧光试验表明,截断型核心蛋白C173定位于细胞核内,而C191和C215则停留在细胞浆中.rvBACC173感染的细胞在核内出现单一的"类晶体样结构",电子显微镜分析证实,这种结构是截断型核心蛋白大量转运并沉积在细胞核内形成的蛋白聚合体.试验结果还表明,第173至191之间的疏水性序列负性调节蛋白的表达,并且影响蛋白在细胞内的分布.间接ELISA实验证实,部分纯化的核心蛋白可用作诊断试剂检测人血清中的特异性抗体.  相似文献   

8.
共生菌普遍存在于昆虫体内,它们能够为宿主昆虫提供生长发育所必需的氨基酸、固醇类等营养物质,还能提高昆虫适应高温、寄生虫、病毒等不利环境因素的能力,昆虫则为共生菌提供稳定的生存环境和营养物质,昆虫与共生菌相互依存。多数情况下,共生菌通过垂直传播在宿主代次间进行传播,即共生菌由母代传递给子代。结合最近几年相关研究,本文综述了不同昆虫共生菌的垂直传播模式。除极少数肠道共生菌通过污染卵壳被宿主幼虫取食得以垂直传播外,垂直传播的共生菌多为经卵传播。根据侵染时期的不同,共生菌经卵传播模式多数可分为以下4种:侵染宿主昆虫幼虫中的生殖干细胞、侵染宿主昆虫年轻雌成虫中的生殖干细胞、侵染宿主昆虫雌成虫中的成熟卵母细胞以及侵染宿主昆虫囊胚期胚胎。其中,有些共生菌是以共生菌菌胞整体侵染的方式进入到宿主卵巢。另外,少数肠道共生菌也通过卵巢进行垂直传播,此类共生菌先侵染卵巢侧输卵管并在侧输卵管聚集,待卵排放至侧输卵管时再进入到卵中。在文中,我们也探讨了昆虫共生菌垂直传播过程中的细胞机制和免疫机制,包括共生菌避开宿主免疫反应、共生菌通过内吞作用进入卵巢以及不同共生菌间的协同作用等。  相似文献   

9.
Sericin is the silk protein enveloping fibroin fibers in cocoons. Sericin hydrolysate protects cultured Sf9 insect cells from death caused by serum deprivation; the activity depends on the repeats of 38 amino acids. A partial peptide from the 38 residues, SGGSSTYGYS, inhibited serum-deprivation death as well. Cell viabilities in the presence of 10% (v/v) foetal calf serum, no additives and 1 mM SGGSSTYGYS were 96, 12 and 31% on the third day after inoculation, respectively. Aromatic residues seemed to be important because SGGSSTWGWS had the same activity as SGGSSTYGYS but SGGSSTAGAS had no activity.  相似文献   

10.
Fragments from prospective distal regions of Drosophila male foreleg imaginal discs failed to undergo proximal intercalary regeneration across leg segment borders when mechanically intermixed and cultured for 8 days with various fragments from prospective proximal disc regions. The failure of the distal cells to regenerate proximal leg segments was not due to a general restriction in their developmental potentials: Distal fragments, when deprived of their distal-most tips, regenerated in the distal direction at a high frequency. It is concluded that there exist in Drosophila leg discs the same restrictions with respect to regeneration along the proximodistal leg axis as had been previously observed in legs of several hemimetabolous insect species: Intersegmental discontinuities between grafted tissue pieces are not eliminated by intercalation. Based on the available evidence in hemimetabolous insects and in Drosophila, a new interpretation of the different aspects of regeneration in insect legs is offered. It is proposed that the two categories of regulative fields observed in insect legs, the leg segment fields and the whole leg field, represent the units of regulation for two fundamentally different regulative pathways that a cell at a wound edge can follow, the intercalative pathway and the terminal pathway, respectively. It is suggested that the criterion used by cells at healing wounds to choose between the two pathways is the difference in circumferential positional information between juxtaposed cells. The intercalative regulative pathway is switched on when cells with disparities in their axial positional information, or cells with less than maximal disparities in their circumferential information, contact one another. The terminal regulative pathway is triggered whenever cells with maximal circumferential disparities come into contact.  相似文献   

11.
茧蜂病毒(Microplitis bicoloratus bracovirus,MbBV)属于多分DNA病毒(polydnavirus,PDV)的一种,主要存在于膜翅目茧蜂科寄生蜂中,对于寄生蜂成功寄生宿主起着至关重要的作用。而亲环素A(cyclophilin A,CypA)是一种肽基脯氨酰顺反异构酶,参与免疫反应等多种细胞活动。主要探讨了茧蜂病毒在感染昆虫细胞的过程中,是否与CypA存在相关性。研究结果显示,在粉纹夜蛾(Trichoplusia ni Hübner)卵细胞系(High Five,Hi5)培养基中加入茧蜂病毒24 h后,通过PCR可扩增出与病毒基因大小一致的目的片段,表明Hi5细胞已被茧蜂病毒感染。在病毒感染细胞后,CypA的基因转录水平显著升高,其蛋白表达水平也有所增加;当沉默cypa基因或抑制CypA活性后,实时荧光定量PCR(real-time fluorescence quantitative PCR,qRT-PCR)结果显示,茧蜂病毒基因中的vank86基因转录水平显著下降;而过表达cypa基因,可使vank86基因转录水平上升。研究结果提示,茧蜂病毒在感染昆虫细胞的过程中,可能与CypA存在一定的相关性。  相似文献   

12.
Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells.  相似文献   

13.
The symbiotic octocoral Sinularia flexibilis is a producer of potential pharmaceuticals. Sustainable mass production of these corals as a source of such compounds demands innovative approaches, including coral cell culture. We studied various cell dissociation methodologies and the feasibility of cultivation of S. flexibilis cells on different media and cell dissociation methodologies. Mechanical dissociation of coral tissue always yielded the highest number of cells and allowed subsequent cellular growth in all treatments. The best results from chemical dissociation reagents were found with trypsin-ethylene diamine tetraacetic acid. Coral cells obtained from spontaneous dissociation did not grow. Light intensity was found to be important for coral cell culture showing an enduring symbiosis between the cultured cells and their intracellular algae. The Grace's insect medium and Grace's modified insect medium were found to be superior substrates. To confirm the similarity of the cultured cells and those in the coral tissue, a molecular test with Internal Transcribed Spacer primers was performed. Thereby, the presence of similar cells of both the coral cells and zooxanthella in different culture media was confirmed.  相似文献   

14.
Microsporidia (M) is a phylum of protists parasitizing obligatory in animal cells. Long way of adaptation of M to intracellular parasitism resulted in establishment of quite close relationships between the parasite and its host. Different species of M induce in their hosts symptoms similar to those caused by misbalance of juvenile hormone (JH) and ecdysone. M infection leads to pathology of different hormone-dependent functions such as cell differentiation and specialization, molting, metamorphosis, diapause and reproduction of insects. The signs of hormonal dysfunction evidence for elevated titer of JH in M-infected insects. Two possible explanation of this could be offered: JH secretion by M or specific influence of the parasites on the insect endocrine systems. Impact on insect endogenous JH titer by M could be mediated by affection of secretory activity of corpora allata or by suppression of enzymatic degradation of JH. According to different hypotheses, insect hormonal status during microsporidiosis could be modified by a) insect host stress-reaction, b) exhaustion of insect host reserves, characteristic for acute phase of the disease, c) destruction of infected insect cells and tissues during mass sporogenesis of M. Data found in literature and provided by our experiments evidence for presence of JH analogues or juvenilizing substance in the extracts of M spores. From detailed examination of pathological process it is also seen that juvenilizing effect of M infection is usually restricted to the invaded regions of tissues (i.e. expressed locally) but not a systemic one. Ability of M to modify morpho-functional features of infected tissues at the level of hormonal regulation is undoubtfully a prominent adaptation for stabilizing "microsporidia-insect" parasite-host systems.  相似文献   

15.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.  相似文献   

16.
Rice stripe virus (RSV) infects rice and is transmitted in a propagative manner by the small brown planthopper.How RSV enters an insect cell to initiate the infection cycle is poorly understood.Sequenc...  相似文献   

17.
To determine if neutralizing epitopes of Bluetongue virus (BTV) 17 are host dependent, e.g., that monoclonal antibodies (mAb) to Bluetongue virus 17 (BTV 17) differ in their ability to neutralize BTV infectivity in insect versus mammalian cells, a panel of neutralizing mAb was developed. The relative neutralizing titer of eight mAb for BTV 17 infectivity in mammalian versus insect target cells was determined. Four mAb differed in their relative neutralization titer when assayed on mammalian target cells as compared to insect target cells. These findings suggest that different epitopes involved in neutralization might be important in virus infectivity and neutralization in mammalian versus insect target cells. To determine which viral protein(s) these mAb bind, the specificity of the mAb was determined by radioimmunoprecipitations. Five BTV 17 neutralizing mAb bound to the major outer coat protein P2, a 98-kDa protein, whereas the BTV protein(s) bound by the other three neutralizing mAb could not be determined. The potential role of the two BTV outer coat proteins in infection of mammalian and insect host cells is discussed.  相似文献   

18.
Recombinant baculoviruses were constructed which express simian virus 40 large T antigen (SVT-Ag) or murine p53 to high levels in infected insect cells. Characterization of the expressed proteins revealed that they display many properties of the corresponding mammalian-derived proteins. Both proteins are of wild-type size, localize to the nucleus, are recognized by several SVT-Ag- or p53-specific monoclonal antibodies, and are phosphorylated in this system. Complexes are formed between baculovirus-derived SVT-Ag and p53 after coinfection of insect cells with both recombinant viruses. After infection of insect cells with either virus individually, each protein can self-associate to form a variety of oligomeric species. Pulse-chase experiments indicated that both SVT-Ag and p53 are highly stable in insect cells, even in the absence of complex formation.  相似文献   

19.
1. Herbivorous insects can be classified into several trophic guilds with different levels of specialisation on their host plants, which may influence the topological structure of their trophic networks. The present study tested the hypothesis that the structure of plant–herbivore networks differs between guilds of galling, sucking, and chewing insects. 2. Six areas of Neotropical savannas were studied in two localities in the North of the state of Minas Gerais, Brazil. In each area, interactions between plant and insect species were used to build networks for different guilds. 3. In total, 18 plant–herbivore networks were built, comprising 317 insect morphospecies, 50 plant species, and 489 distinct interactions. The networks were characterised using species richness and different network topological measures (connectance, modularity, nestedness, and specialisation). 4. The results obtained showed no difference in species richness, network size, and connectance between distinct insect herbivore guilds. However, it was found that modularity was higher for exophagous than galling insect networks and nestedness was higher for chewers than for other guilds. On the other hand, galling insect networks showed higher specialisation than exophagous insect networks, and sucking insect networks were more specialised than chewing insect networks. 5. The findings of the present study indicate that, although species richness did not differ between insect guilds of herbivores in Neotropical savannas, the topological structure of networks is sensitive to biological and ecological differences between these herbivore groups. The present study stands out as the first to systematically compare the network structure of different herbivore guilds in Neotropical savannas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号