首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titration of cyanide-incubated cytochrome c oxidase (ox heart cytochrome aa3) with ferrocytochrome c or with NNN'N'-tetramethyl-p-phenylenediamine initially introduces two reducing equivalents per mol of cytochrome aa3. The first equivalent reduces the cytochrome a haem iron; the second reducing equivalent is not associated with reduction of the 830 nm chromophores (e.p.r.-detectable copper) but is probably required for reduction of the e.p.r.-undetectable copper. Excess reductant introduces a third reducing equivalent into the cyanide complex of cytochrome aa3. During steady-state respiration in the presence of cytochrome c and ascorbate, the 830 nm chromophore is almost completely oxidized. It is reduced more slowly than cytochrome a on anaerobiosis. In the presence of formate or azide, some reduction at 830 nm can be seen in the steady state; in an oxygen-pulsed system, a decrease in steady-state reduction of cytochromes c and a is associated with ab increased reduction of the 830 nm species. In the formate-inhibited system the reduction of a3 on anaerobiosis shows a lag phase, the duration of which corresponds to the time taken for the 830 nm species to be reduced. It is concluded that the e.p.r.-undetectable copper (CuD) is reduced early in the reaction sequence, whereas the detectable copper (CUD) is reduced late. The latter species is probably that responsible for reduction of the cytochrome a3 haem. The magnetic association between undetectable copper and the a3 haem may not imply capability for electron transfer, which occurs more readily between cytochrome a3 and the 830 nm species.  相似文献   

2.
W J Ingledew  M Bacon  P R Rich 《FEBS letters》1992,305(3):167-170
The bacterial quinol oxidase, cytochrome o, is an enzyme which is highly analogous to the better known cytochrome c oxidase, cytochrome aa3, but with the important difference that it lacks the near infra-red absorbing pigment CuA. In this article we report an absorption band in the near IR spectrum of cytochrome o with a maximal absorption at 758 nm, and which is attributable to the ferrous high-spin haem. The 758 nm band has an extinction coefficient of 0.2-0.3 mM-1.cm-1 at 758-800 nm. This region in cytochrome aa3 is dominated by the CuA absorption. The 758 nm absorption is lost on addition of CO or cyanide to the reduced enzyme. The carbon monoxide compound of cytochrome o also has absorbance bands in the near infra-red, and these may be attributable to a low-spin ferrous haem compound.  相似文献   

3.
The resolution of cytochrome and hemoglobin changes in in vivo rat and cat brains has required studies over wide wavelength ranges (580-1100 nm) with a novel spectroscopic technique using blood-free and blood-perfused brains. Tissue oxygen was varied from physiological levels to 0 and hematocrits were varied from normal to less than 1%. The experimental results were subjected to a multicomponent analysis using the Beer-Lambert law. At normal hematocrits, the oxygen saturation of hemoglobin in the brain was found to be 30-50% in rats and cats, indicating that the optical method responded primarily to the saturation of the venous ends of the capillary beds. With low hematocrits, both brains showed the absorption band of reduced cytochrome c, the iron component of cytochrome aa3, plus the absorption band of the oxidized copper component. In cat brains, the background absorption changed at all wavelengths. Thus, no isosbestic points were observed in the spectra. In rat brains, however, they were readily observed. The "overtones" of water absorption in the NIR region were found to be significant in the difference spectra of the cat brain, but not in the rat brain. Parallel absorbance changes in the heme and copper components of cytochrome aa3 were obtained in rat and cat brains during the normoxic-hypoxic transition. The ratio of the iron absorbance at 605 nm to the copper absorbance at 830 nm is much smaller in both brains than the in vitro value due to the shorter path length of photon migration at the shorter wavelengths.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The reaction of cyanide with cytochrome aa3 in intact mitochondria is known to differ significantly from the reaction with the isolated enzyme. To examine the cyanide reaction with cytochrome aa3 in situ, we studied the spectral characteristics and the reaction kinetics of cyanide with reduced brain cytochrome aa3 in an isolated perfused rat head preparation. Anaesthetized rats underwent bilateral carotid-arterial cannulation. The head (skull intact, muscle removed) was perfused with a crystalloid solution containing Na2S2O4, and the animal was then decapitated. By means of reflectance spectrophotometry the reaction of cyanide with cytochrome aa3 was continuously monitored with the use of the 590 nm-575 nm, 610 nm-575 nm and 590 nm-610 nm wavelength pairs. We found that: the kinetics of the absorbance change at 590 nm and 610 nm were similar, with almost identical apparent rate constants, suggesting that these spectral changes are the results of the formation of a single complex; the difference spectrum obtained on addition of cyanide to the fully reduced preparation showed a peak at 588 nm and a trough at 610 nm, consistent with spectral characteristics of the cyanide-ferrocytochrome aa3 complex in isolated enzyme and isolated mitochondria in vitro; this observation underscores the accuracy of monitoring the effects of inhibitors of mitochondrial function on cytochrome redox reactions in situ; the half-maximal (K0.5) effect was approx. 50 microM, significantly lower than that in vitro. The lower apparent K0.5 for cyanide in this preparation in situ may be due to a difference in the pH of the two systems. This approach provides the means to study the inhibitors of mitochondrial function in intact brain under a physiological environment.  相似文献   

5.
The findings in the current studies with pure cytochrome aa3 confirm the findings in an accompanying paper pertaining to cytochrome aa3 in mitochondria (Reddy et al., 1985). In both cases, three Nernstian titrations are seen with Em values near 200, 260, 340 mV with n values of 2, 2, and 1. Similarly, the alpha absorption features of the difference spectra in both cases were centered near 602, 605, and 607 mn. The component with Em approximately 200 mV was identified as heme a3 on the basis of experiments conducted in an atmosphere of carbon monoxide, and in both cases, the carbon monoxide-liganded species did not display an elevated Em. In the current studies, unique Soret absorbance features are added to the difference spectra for the three Nernstian transitions. Specifically, absorption peaks at 429, 446, and 448 nm go with the alpha peaks seen respectively at 602, 605, and 607 nm. Evidence was presented to support the hypothesis that the redox state of heme alpha may control the redox potential of heme a3.  相似文献   

6.
The light-induced difference spectra of the fully reduced (a2+ a23+-CO) complex and the mixed-valence carboxycytochrome c oxidase (a3+ a23+-CO) during steady-state illumination and after flash photolysis showed marked differences. The differences appear to be due to electron transfer between the redox centres in the enzyme. The product of the absorbance coefficient and the quantum yield was found to be equal in both enzyme species, both when determined from the rates of photolysis and from the values of the dissociation constants of the cytochrome a23+-CO complex. This would confirm that the spectral properties of cytochrome a3 are not affected by the redox state of cytochrome a and CuA. When the absorbance changes after photolysis of cytochrome a23+-CO with a laser flash were followed on a time scale from 1 mus to 1 s in the fully reduced carboxycytochrome c oxidase, only the CO recombination reaction was observed. However, in the mixed-valence enzyme an additional fast absorbance change (k = 7 X 10(3) s-1) was detected. The kinetic difference spectrum of this fast change showed a peak at 415 nm and a trough at 445 nm, corresponding to oxidation of cytochrome a3. Concomitantly, a decrease of the 830 nm band was observed due to reduction of CuA. This demonstrates that in the partially reduced enzyme a pathway is present between CuA and the cytochrome a3-CuB pair, via which electrons are transferred rapidly.  相似文献   

7.
M Oliveberg  B G Malmstr?m 《Biochemistry》1992,31(14):3560-3563
The reactions of the fully reduced, three-electron-reduced, and mixed-valence cytochrome oxidase with molecular oxygen have been followed in flow-flash experiments, starting from the CO complexes, at 445 and 830 nm at pH 7.4 and 25 degrees C. With the fully reduced and the three-electron-reduced enzyme, four kinetic phases with rate constants in the range from 1 x 10(5) to 10(3) s-1 can be observed. The initial fast phase is associated with an absorbance increase at 830 nm. This is followed by an absorbance decrease (2.8 x 10(4) s-1), the amplitude of which increases with the degree of reduction of the oxidase. The third phase (6 x 10(3) s-1) displays the largest absorbance change at both wavelengths in the fully reduced enzyme and is not seen in the mixed-valence oxidase at 830 nm; a change with opposite sign but with a similar rate constant is found at 445 nm in this enzyme form. The slowest phase (10(3) s-1) is also largest in the fully reduced oxidase and not seen in the mixed-valence enzyme. It is suggested that O2 initially binds to reduced CuB and is then transferred to cytochrome a3 before electron transfer from cytochrome a/CuA takes place. The fast oxidation of cytochrome a seen with the fully reduced enzyme is suggested not to occur during natural turnover. A reaction cycle for the complete turnover of the enzyme is presented. In this cycle, the oxidase oscillates between electron input and output states of the proton pump, characterized by cytochrome a having a high and a low reduction potential, respectively.  相似文献   

8.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1989,28(25):9777-9784
Reduction of cytochrome P-450scc(SF) (SF, substrate free) purified from bovine adrenocortical mitochondria with sodium dithionite (Na2S2O4) or with beta-NADPH mediated by catalytic amounts of adrenodoxin and adrenodoxin reductase in the presence of phenyl isocyanide produced a ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex with Soret absorbance maximum at 455 nm having a shoulder at 425 nm. On the other hand, when a preformed cytochrome P-450scc(SF)-adrenodoxin complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum showed drastic changes, i.e., an increase in intensity at 425 nm and a concomitant decrease in intensity at 455 nm. Similar spectral changes could be produced by addition of the same amount of reduced adrenodoxin afterward to the ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex. Titration experiments with adrenodoxin showed that (1) a 1:1 stoichiometric saturation of the spectral change was obtained for both the absorbance increase at 425 nm and the absorbance decrease at 455 nm, (2) there was no spectral change in the presence of 0.35 M NaCl, and (3) there was no spectral change for cytochrome P-450scc(SF) whose Lys residue(s) essential to the interaction with adrenodoxin had been covalently modified with PLP. These results suggest that ternary complex formation of ferrous cytochrome P-450scc(SF)-phenyl isocyanide with reduced adrenodoxin caused a conformational change around the ferrous heme moiety. By analysis of temperature and pH dependencies of the spectral change of the ternary complex, it was suggested that this conformational change may reflect the essential step for electron transfer from reduced adrenodoxin to the ferrous-dioxygen complex of cytochrome P-450scc.  相似文献   

9.
The effect of CO on the optical absorbance spectrum of partially reduced cytochrome c oxidase has been studied. The changes at 432 and 590 nm suggest that the cytochrome alpha2/3+ - CO compound is formed preferentially and that concomitantly a second electron is taken up by the enzyme. From the CO-induced changes at 830 nm it is concluded that in the partially reduced enzyme addition of CO causes reoxidation of the copper component of cytochrome c oxidase. Addition of CO to partially reduced enzyme (2 electrons per 4 metal ions) also brings about a decrease in the intensities of electron paramagnetic resonance signals of high-spin heme iron near g = 6 and of the low-spin heme at g = 2.6. Concomitantly both the low-spin heme a signal at g = 3 and the copper signal at g = 2 increase in intensity. These results demonstrate that formation of the reduced diamagnetic cytochrome a3 - CO compound is accompanied by reoxidation of both the copper component detectable by electron paramagnetic resonance and possibly also by cytochrome a.  相似文献   

10.
Using newer techniques for conducting and analyzing potentiometric titrations, we have studied the thermodynamic and spectral properties of cytochrome c1 in beef heart mitochondria. We find two species of cytochrome c1, both with n = 2 values for the number of electrons involved in their oxidation or reduction. One has an Em approximately 210 mV and a spectral peak near 555 nm and the other has an Em approximately 255 mV and a spectral peak nearer 553 nm. These Em values are pH-independent in the range of pH 6 to 8. The Em and n values of these two components are indistinguishable from those of two species of cytochrome aa3 (i.e. spectral feature of 605 nm).  相似文献   

11.
Potentiometric study of cytochrome c1aa3 from Thermus thermophilus   总被引:1,自引:0,他引:1  
We have examined the redox behavior of the cytochrome c1aa3 complex from Thermus thermophilus. In potentiometric titrations the cytochrome c behaves as an independent center having n = 1 and E = 205 mV (NHE). Under the assumption that the individual centers equilibrate independently in this experiment, changes in the absorption band at 603 nm have been resolved into two components: cytochrome a (n = 1, Em = 270 mV, 60% spectral contribution) and cytochrome a3 (n = 2, Em = 360 mV, 40% spectral contribution). The n = 2 process was attributed to strong chemical coupling between cytochrome a3 and CuB. The enzyme was also titrated with a mixture of NADH and PMS, and the results are shown not to conform to a model of intramolecular equilibrium according to the equilibrium constants obtained from the potentiometric titration. It is suggested that a conformational equilibrium within the complex may control electron transfer between cytochromes a and a3.  相似文献   

12.
Near infrared (IR) spectroscopy can give continuous, direct information about cerebral oxygenation in vivo by providing signals from oxygenated and deoxygenated haemoglobin and cytochrome aa3. Due to a lack of precise spectral information and uncertainties about optical path length it has previously been impossible to quantify the data. We have therefore obtained the cytochrome aa3 spectrum in vivo from the brains of rats after replacing the blood with a fluorocarbon substitute. Near infrared haemoglobin spectra were also obtained, at various oxygenation levels, from cuvette studies of lysed human red blood cells. Estimates of optical path length have been obtained. The data were used to construct an algorithm for calculating the changes in oxygenated and deoxygenated haemoglobin and oxygenated cytochrome aa3 in tissue from changes in near IR absorption.  相似文献   

13.
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. We have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser (0.6-ns, 1.0-mJ pulses) to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 +/- 2000 s-1 (1 sigma), at pH 7.0 and 25.5 degrees C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome a and copper A is far faster than any rate measured or inferred previously for this process.  相似文献   

14.
The mitochondria isolated from the ciliate protozoon Tetrahymena pyriformis carry an oxidative phosphorylation with P/O ratio of 2 for succinate oxidation and P/O ratio of 3 for the oxidation of the NAD-linked substrates. The respiration is more than 90% inhibited with 1 mM cyanide while antimycin A and rotenone inhibit at concentrations of 1000-fold higher than those effective in mammalian mitochondria. Using a combination of spectral studies and potentiometric titrations, the components of the respiratory chain were identified and characterized with respect to the values of their half-reduction potentials. In the cytochrome bc1 region of the chain a cytochrome c was present with an Em7.2 of 0.225 V and two components with absorption maxima at 560 nm and the half-reduction potential values of -0.065 and -0.15 V at pH 7.2. The cytochrome with the more positive half-reduction potential was identified as the analogue of the cytochrome(s) b present in mitochondria of higher organisms, while the cytochrome with the more negative half-reduction potential was tentatively identified as cytochrome o. In addition ubiquinone was present at a concentration of approx. 4 nmol per mg mitochondrial protein. In the spectral region where cytochromes a absorb at least three cytochromes were found. A cytochrome with an absorption maximum at 593 nm and a midpoint potential of -0.085 V at pH 7.2 was identified as cytochrome a1. The absorption change at 615-640 nm, attributed usually to cytochrome a2, was resolved into two components with Em7,2 values of 0,245 and 0.345 V. It is concluded that the terminal oxidase in Tetrahymena pyriformis mitochondria is cytochrome a2 which in its two component structure resembles cytochrome aa3.  相似文献   

15.
The reaction of hydrogen peroxide and certain aromatic aldehydes with cytochrome P450BM3-F87G results in the covalent modification of the heme cofactor of this monooxygenase. Analysis of the resulting heme by electronic absorption spectrophotometry indicates that the reaction in the BM3 isoform is analogous to that in P450(2B4), which apparently occurs via a peroxyhemiacetal intermediate [Kuo et al., Biochemistry, 38 (1999) 10511]. It was observed that replacement of the Phe-87 in the P450BM3 by the smaller glycyl residue was essential for the modification to proceed, as the wild-type enzyme showed no spectral changes under identical conditions. The kinetics of this reaction were examined by stopped-flow spectrophotometry with 3-phenylpropionaldehyde and 3-phenylbutyraldehyde as reactants. In each case, the process of heme modification was biphasic, with initial bleaching of the Soret absorbance, followed by an increase in absorbance centered at 430 nm, consistent with meso-heme adduct formation. The intermediate formed during phase I also showed an increased absorbance between 700 and 900 nm, relative to the native heme and the final product. Phase I showed a linear dependence on peroxide concentration, whereas saturation kinetics were observed for phase II. All of these observations are consistent with a mechanism involving radical attack at the gamma-meso position of the heme cofactor, resulting in the intermediate formation of an isoporphyrin, the deprotonation of which produces the gamma-meso-alkyl heme derivative.  相似文献   

16.
Reduction of cytochrome P-450S21 (SF) (SF, substrate-free; purified from bovine adrenocortical microsomes) with sodium dithionite (Na2S2O4) in the presence of phenylisocyanide produced a ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex with Soret absorbance maxima at 429 and 456 nm. On the other hand, when a preformed ferric cytochrome P-450S21 (SF)-NADPH-cytochrome-P-450 reductase (Fp2) complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum of the ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex changed drastically, as characterized by an increase in absorbance intensity at 429 nm and a decrease at 456 nm. Similar spectral changes were observed by addition of reduced Fp2 to the preformed ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex. Experiments to reduce a ferric cytochrome P-450S21 (SF)-phenylisocyanide complex with sodium dithionite in the presence of various amounts of Fp2 showed that; (1), the spectral change reached maxima for both absorption increase at 429 nm and decrease at 456 nm when cytochrome P-450S21 and Fp2 were previously mixed at the cytochrome P-450S21:Fp2 ratio of 1:5; (2), the spectral change was suppressed in 300 mM potassium phosphate buffer (pH 7.4). These results suggest that the absorbance spectral change is due to a conformational change around the heme moiety induced by association with reduced Fp2.  相似文献   

17.
High and low spin complexes of ferric and ferrous heme a have been prepared and characterized spectroscopically. Bis(1-methylimidazole) heme a provides a good model for cytochrome a in both oxidation states while several spectral properties of cytochrome a3 can be reproduced by 1,2-dimethylimidazole heme a3. The visible absorbance spectra of these analogs account well for the absorbance spectra of oxidized and reduced cytochrome oxidase and support the conclusion (Vanneste, W. (1966) Biochemistry 5, 838-848) that cytochrome a provides the major contribution to the spectral changes in the 600 nm band upon reduction. The 655 nm band present in cytochrome oxidase appears to be a characteristic of high spin heme a+3.  相似文献   

18.
Reflectance spectrophotometry through the skull was used to investigate carbon monoxide (CO) binding by tissue hemoproteins in the brains of barbiturate-anesthetized Sprague-Dawley rats. After splenectomy and extensive perfluorotributylamine exchange transfusion, steady-state spectral scans were obtained in Soret and visible wave-length regions during O2 ventilation, during subsequent exposure to O2-enriched gases containing 1, 3, or 5% CO, and finally after N2 anoxia. These CO exposures were well-tolerated and electroencephalograph (EEG) activity continued to be present. Initial difference spectra were influenced by CO binding to residual hemoglobin, but spectral evidence of CO-mediated b-type cytochrome reduction was obtained in the visible region as CO concentration was increased to 3 or 5%. This was associated with Soret spectra compatible with formation of the reduced cytochrome a3-CO complex. Reduction of cytochrome a at 605 nm and cytochrome c + c1 at 550 nm was absent. These findings may indicate respiratory chain branching through b cytochromes, either to a separate a3-like oxidase independent of the classical cytochrome aa3 or to an unidentified alternative CO-sensitive oxidase.  相似文献   

19.
The electronic absorption spectrum of solubilized beef heart cytochrome c oxidase was analyzed in the 400-500 nm region to identify the origin of doublet features appearing in the second derivative spectrum associated with ferrocytochrome a. This doublet, centered near 22,600 cm(-1), was observed in the direct absorption spectrum of the a(2+)a(3)(3+).HCOO(-) form of the enzyme at cryogenic temperatures. Since evidence for this doublet at room temperature is obtained only on the basis of the second derivative spectrum, a novel mathematical approach was developed to analyze the resolving power of second derivative spectroscopy as a function of parameterization of spectral data. Within the mathematical limits defined for resolving spectral features, it was demonstrated that the integrated intensity of the doublet feature near 450 nm associated with ferrocytochrome a is independent of the ligand and oxidation state of cytochrome a(3). Furthermore, the doublet features, also observed in cytochrome c oxidase from Paracoccus denitrificans, were similarly associated with the heme A component and were correspondingly independent of the ligand and oxidation state of the heme A(3) chromophore. The doublet features are attributed to lifting of the degeneracy of the x and y polarized components of the B state of the heme A chromophore associated with the Soret transition.  相似文献   

20.
Y Ikeda  K Okamura-Ikeda  K Tanaka 《Biochemistry》1985,24(25):7192-7199
We systematically studied the visual spectral changes of short-chain, medium-chain, and long-chain acyl coenzyme A (acyl-CoA) dehydrogenases, purified from rat liver mitochondria, that occur upon reaction with acyl-CoA in the absence of an electron acceptor (half-reaction). Acyl-CoA esters having various chain lengths were tested, and changes in the steady-state spectral parameters were correlated with the turnover number in the complete reaction, which represented the ability of an enzyme/substrate combination to produce an enoyl-CoA. The long-wavelength absorbance, centered around 580 nm, was observed only in the enzyme/substrate combinations in which enoyl-CoA product was produced at a significant rate in the complete reaction. There was a good correlation between the magnitudes of the long-wavelength absorbance and the turnover numbers. In contrast, the bleaching of the flavin chromophore at 450 nm was observed not only in the titration with preferred substrates but also in that with unfavorable substrates, which were shorter than favorable substrates. In the interaction with the shorter than favorable substrates, however, enoyl-CoA was not produced, nor did long-wavelength absorbance occur. When short-chain and medium-chain acyl-CoA dehydrogenases were reacted with longer than favorable substrate from which no enoyl-CoA was produced, neither the appearance of the long-wavelength absorbance nor bleaching of flavin chromophore was observed. These data suggest that the catalytic base, which abstracts alpha-proton, and flavin adenine dinucleotide are internally located, and the region containing these two sites may physically be in the form of crevice or pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号