首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sardinian wine strains of Saccharomyces cerevisiae used to make sherry-like wines form a biofilm at the air-liquid interface at the end of ethanolic fermentation, when grape sugar is depleted and further growth becomes dependent on access to oxygen. Here, we show that FLO11, which encodes a hydrophobic cell wall glycoprotein, is required for the air-liquid interfacial biofilm and that biofilm cells have a buoyant density greater than the suspending medium. We propose a model for biofilm formation based on an increase in cell surface hydrophobicity occurring at the diauxic shift. This increase leads to formation of multicellular aggregates that effectively entrap carbon dioxide, providing buoyancy. A visible biofilm appears when a sufficient number of hydrophobic cell aggregates are carried to and grow on the liquid surface.  相似文献   

2.
Bacterial biofilms are complex multicellular assemblies, characterized by a heterogeneous extracellular polymeric matrix, that have emerged as hallmarks of persistent infectious diseases. New approaches and quantitative data are needed to elucidate the composition and architecture of biofilms, and such data need to be correlated with mechanical and physicochemical properties that relate to function. We performed a panel of interfacial rheological measurements during biofilm formation at the air-liquid interface by the Escherichia coli strain UTI89, which is noted for its importance in studies of urinary tract infection and for its assembly of functional amyloid fibers termed curli. Brewster-angle microscopy and measurements of the surface elasticity (Gs′) and stress-strain response provided sensitive and quantitative parameters that revealed distinct stages during bacterial colonization, aggregation, and eventual formation of a pellicle at the air-liquid interface. Pellicles that formed under conditions that upregulate curli production exhibited an increase in strength and viscoelastic properties as well as a greater ability to recover from stress-strain perturbation. The results suggest that curli, as hydrophobic extracellular amyloid fibers, enhance the strength, viscoelasticity, and resistance to strain of E. coli biofilms formed at the air-liquid interface.  相似文献   

3.
Saccharomyces cerevisiae “flor” yeasts have the ability to form a buoyant biofilm at the air-liquid interface of wine. The formation of biofilm, also called velum, depends on FLO11 gene length and expression. FLO11 encodes a cell wall mucin-like glycoprotein with a highly O-glycosylated central domain and an N-terminal domain that mediates homotypic adhesion between cells. In the present study, we tested previously known antimicrobial peptides with different mechanisms of antimicrobial action for their effect on the viability and ability to form biofilm of S. cerevisiae flor strains. We found that PAF26, a synthetic tryptophan-rich cationic hexapeptide that belongs to the class of antimicrobial peptides with cell-penetrating properties, but not other antimicrobial peptides, enhanced biofilm formation without affecting cell viability in ethanol-rich medium. The PAF26 biofilm enhancement required a functional FLO11 but was not accompanied by increased FLO11 expression. Moreover, fluorescence microscopy and flow cytometry analyses showed that the PAF26 peptide binds flor yeast cells and that a flo11 gene knockout mutant lost the ability to bind PAF26 but not P113, a different cell-penetrating antifungal peptide, demonstrating that the FLO11 gene is selectively involved in the interaction of PAF26 with cells. Taken together, our data suggest that the cationic and hydrophobic PAF26 hexapeptide interacts with the hydrophobic and negatively charged cell wall, favoring Flo11p-mediated cell-to-cell adhesion and thus increasing biofilm biomass formation. The results are consistent with previous data that point to glycosylated mucin-like proteins at the fungal cell wall as potential interacting partners for antifungal peptides.  相似文献   

4.
Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.Flor or velum formation by certain wine strains of Saccharomyces cerevisiae (flor strains) is a form of cellular aggregation observed as an air-liquid interfacial biofilm at the end of the alcoholic fermentation. Formation of the biofilm appears to be an adaptive mechanism because it ensures access to oxygen and therefore permits continued growth on nonfermentable ethanol. In general, nonbuoyant cells cease growth at the end of completed wine fermentations not for lack of carbon but for lack of oxygen. Biofilm cells have been found to have an elevated and/or altered lipid content and increased surface hydrophobicity (3, 5, 8, 9, 11). While both Hsp12, a small heat shock protein (13), and Muc1 (also known as Flo11), a hydrophobic cell wall mannoprotein (4, 6), have been shown to be required for the flor biofilm (10, 12, 14), other genetic or environmental requirements, other than an absence of glucose and the presence of ethanol and oxygen, have not been demonstrated. Here, we asked whether flor formation could be induced during growth on nonfermentable substrates other than ethanol. On the basis of dry weight of biofilm formed per mg of available carbon, the best carbon sources were found to be glycerol, ethyl acetate, and ethanol, in descending order. While subsurface growth occurred on acetic, dl-lactic, and succinic acids, an air-liquid interfacial biofilm did not always form. Microarray analysis of cells shifted from growth on glucose to growth on ethanol did not detect significant changes in expression of known biofilm formation-associated genes.  相似文献   

5.
Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780?≤?E an?≤?0.965 V (electrooxidized MCE, eMCE). The formation of mainly S0 and minor amounts of CuS and S n 2? were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48–120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S0/S n 2? was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the S n 2?/S0/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.  相似文献   

6.
Biofilm formation by Bacillus cereus was assessed using 56 strains of B. cereus, including the two sequenced strains, ATCC 14579 and ATCC 10987. Biofilm production in microtiter plates was found to be strongly dependent on incubation time, temperature, and medium, as well as the strain used, with some strains showing biofilm formation within 24 h and subsequent dispersion within the next 24 h. A selection of strains was used for quantitative analysis of biofilm formation on stainless steel coupons. Thick biofilms of B. cereus developed at the air-liquid interface, while the amount of biofilm formed was much lower in submerged systems. This suggests that B. cereus biofilms may develop particularly in industrial storage and piping systems that are partly filled during operation or where residual liquid has remained after a production cycle. Moreover, depending on the strain and culture conditions, spores constituted up to 90% of the total biofilm counts. This indicates that B. cereus biofilms can act as a nidus for spore formation and subsequently can release their spores into food production environments.  相似文献   

7.
The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins.  相似文献   

8.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20°C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37°C. At 8°C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

9.

Background

The PLUNC (“Palate, lung, nasal epithelium clone”) protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family - the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP) - are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways.

Methodology/Principal Findings

Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model.

Conclusions/Significance

Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.  相似文献   

10.
Overall cell surface hydrophobicity (CSH) is predicted to play an important role during biofilm formation in Candida albicans but is the result of many expressed proteins. This study compares the CSH status and CSH1 gene expression in C. albicans planktonic cells, sessile biofilm, and dispersal cells. Greater percentages of hydrophobic cells were found in non-adhered (1.5 h) and dispersal forms (24 or 48 h) (41.34±4.17% and 39.52±7.45%, respectively), compared with overnight planktonic cultures (21.69±3.60%). Results from quantitative real-time PCR confirmed greater up-regulation of the CSH1 gene in sessile biofilm compared with both planktonic culture and dispersal cells. Up-regulation was also greater in dispersal cells compared with planktonic culture. The markedly increased CSH found both in C. albicans biofilm, and in cells released during biofilm formation could provide an advantage to dispersing cells building new biofilm.  相似文献   

11.
The aims of the investigation were to ascertain if surface attachment of Cunninghamella elegans and niche intertidal conditions provided in a bioreactor influenced biotransformation of fluoranthene by C. elegans. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disc allowed comparison of fluoranthene biotransformation between CCFs with a hydrophobic surface (PMMA-CCF) and a hydrophilic glass surface (GS-CCF) and a 500-ml Erlenmeyer flask (EF). Fluoranthene biotransformation was higher by 22-fold, biofilm growth was higher by 3-fold, and cytochrome P450 gene expression was higher by 2.1-fold when C. elegans was cultivated with 2% inoculum as biofilm culture in PMMA-CCF compared to planktonic culture in EF. Biotransformation was enhanced by 7-fold with 10% inoculum. The temporal pattern of biofilm progression based on three-channel fluorescence detection by confocal laser scanning microscopy demonstrated well-developed, stable biofilm with greater colocalization of fluoranthene within extracellular polymeric substances and filaments of the biofilm grown on PMMA in contrast to a glass surface. A bioreactor with discs rotating at 2 revolutions per day affording 6-hourly emersion and immersion mimicked the niche intertidal habitat of C. elegans and supported biofilm formation and transformation of fluoranthene. The amount of transformed metabolite was 3.5-fold, biofilm growth was 3-fold, and cytochrome P450 gene expression was 1.9-fold higher in the process mimicking the intertidal conditions than in a submerged process without disc rotation. In the CCF and reactor, where biofilm formation was comparatively greater, higher concentration of exopolysaccharides allowed increased mobilization of fluoranthene within the biofilm with consequential higher gene expression leading to enhanced volumetric productivity.  相似文献   

12.
Streptococcus pneumoniae forms biofilms, but little is known about its extracellular polymeric substances (EPS) or the kinetics of biofilm formation. A system was developed to enable the simultaneous measurement of cells and the EPS of biofilm-associated S. pneumoniae in situ over time. A biofilm reactor containing germanium coupons was interfaced to an attenuated total reflectance (ATR) germanium cell of a Fourier transform infrared (FTIR) laser spectrometer. Biofilm-associated cells were recovered from the coupons and quantified by total and viable cell count methods. ATR-FTIR spectroscopy of biofilms formed on the germanium internal reflection element (IRE) of the ATR cell provided a continuous spectrum of biofilm protein and polysaccharide (a measure of the EPS). Staining of the biofilms on the IRE surface with specific fluorescent probes provided confirmatory evidence for the biofilm structure and the presence of biofilm polysaccharides. Biofilm protein and polysaccharides were detected within hours after inoculation and continued to increase for the next 141 h. The polysaccharide band increased at a substantially higher rate than did the protein band, demonstrating increasing coverage of the IRE surface with biofilm polysaccharides. The biofilm total cell counts on germanium coupons stabilized after 21 h, at approximately 105 cells per cm2, while viable counts decreased as the biofilm aged. This system is unique in its ability to detect and quantify biofilm-associated cells and EPS of S. pneumoniae over time by using multiple, corroborative techniques. This approach could prove useful for the study of biofilm processes of this or other microorganisms of clinical or industrial relevance.  相似文献   

13.
Porous biomaterial is the preferred implant due to the interconnectivity of the pores. Chances of infection due to biofilm are also high in these biomaterials because of the presence of pores. Although biofilm in implants contributes to 80% of human infections [1], there are no commercially available natural therapeutics against it. In the current study, glutaraldehyde cross linked lipase was transferred onto a activated porous polycaprolactam surface using Langmuir-Blodgett deposition technique, and its thermostability, slimicidal, antibacterial, biocompatibility and surface properties were studied. There was a 20% increase in the activity of the covalently crosslinked lipase when compared to its free form. This immobilized surface was thermostable and retained activity and stability until 100°C. There was a 2 and 7 times reduction in carbohydrate and 9 and 5 times reduction in biofilm protein of Staphylococcus aureus and Escherichia coli respectively on lipase immobilized polycaprolactam (LIP) when compared to uncoated polycaprolactam (UP). The number of live bacterial colonies on LIP was four times less than on UP. Lipase acted on the cell wall of the bacteria leading to its death, which was confirmed from AFM, fluorescence microscopic images and amount of lactate dehydrogenase released. LIP allowed proliferation of more than 90% of 3T3 cells indicating that it was biocompatible. The fact that LIP exhibits antimicrobial property at the air-water interface to hydrophobic as well as hydrophilic bacteria along with lack of cytotoxicity makes it an ideal biomaterial for biofilm prevention in implants.  相似文献   

14.
Acylated homoserine lactone molecules are used by a number of gram-negative bacteria to regulate cell density-dependent gene expression by a mechanism known as quorum sensing (QS). In Pseudomonas aeruginosa, QS or cell-to-cell signaling controls expression of a number of virulence factors, as well as biofilm differentiation. In this study, we investigated the role played by the las and rhl QS systems during the early stages of static biofilm formation when cells are adhering to a surface and forming microcolonies. These studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants when glucose, but not citrate, was used as the sole carbon source. To further elucidate the contribution of lasI and rhlI to biofilm maturation, we utilized fusions to unstable green fluorescent protein in concert with confocal microscopy to perform real-time temporal and spatial studies of these genes in a flowing environment. During the course of 8-day biofilm development, lasI expression was found to progressively decrease over time. Conversely, rhlI expression remained steady throughout biofilm development but occurred in a lower percentage of cells. Spatial analysis revealed that lasI and rhlI were maximally expressed in cells located at the substratum and that expression decreased with increasing biofilm height. Because QS was shown previously to be involved in biofilm differentiation, these findings have important implications for the design of biofilm prevention and eradication strategies.  相似文献   

15.
Escherichia coli is a highly adaptive microorganism, and its ability to form biofilms under certain conditions can be critical for antimicrobial resistance. The adhesion of four E. coli isolates from bovine mastitis to bovine mammary alveolar (MAC-T) cells, biofilm production on a polystyrene surface, and the expression profiles of the genes fliC, csgA, fimA, and luxS in the presence of enrofloxacin, gentamicin, co-trimoxazole, and ampicillin at half of the MIC were investigated. Increased adhesion of E. coli isolates in the presence of antimicrobials was not observed; however, increased internalization of some isolates was observed by confocal microscopy. All of the antimicrobials induced the formation of biofilms by at least one isolate, whereas enrofloxacin and co-trimoxazole decreased biofilm formation by at least one isolate. Quantitative PCR analysis revealed that all four genes were differentially expressed when bacteria were exposed to subinhibitory concentrations of antimicrobials, with expression altered on the order of 1.5- to 22-fold. However, it was not possible to associate gene expression with induction or reduction of biofilm formation in the presence of the antimicrobials. Taken together, the results demonstrate that antimicrobials could induce biofilm formation by some isolates, in addition to inducing MAC-T cell invasion, a situation that might occur in vivo, potentially resulting in a bacterial reservoir in the udder, which might explain some cases of persistent mastitis in herds.  相似文献   

16.
The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were able to specifically reverse the inhibitory effects of their cognate d-amino acids. We also show that d-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding d-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of d-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of d-amino acids without losing the ability to incorporate at least one noncanonical d-amino acid, d-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of d-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis.  相似文献   

17.
Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ≥20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies.  相似文献   

18.
Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, produced antibacterial compounds. Many non-Roseobacter marine bacteria were inhibited by sterile filtered supernatants of Silicibacter sp. TM1040 and Phaeobacter (formerly Roseobacter) strain 27-4, which had the highest production of antibacterial compound. In contrast, Roseobacter strains were susceptible only when exposed to concentrated compound. The production of antibacterial compound was influenced by the growth conditions, as production was most pronounced when bacteria were grown in liquid medium under static conditions. Under these conditions, Silicibacter sp. TM1040 cells attached to one another, forming rosettes, as has previously been reported for Phaeobacter 27-4. A spontaneous Phaeobacter 27-4 mutant unable to form rosettes was also defective in biofilm formation and the production of antibacterial compound, indicating a possible link between these phenotypes. Rosette formation was observed in 8 of 14 Roseobacter clade strains examined and was very pronounced under static growth in 5 of these strains. Attachment to surfaces and biofilm formation at the air-liquid interface by these five strains was greatly facilitated by growth conditions that favored rosette formation, and rosette-forming strains were 13 to 30 times more efficient in attaching to glass compared to strains under conditions where rosette formation was not pronounced. We hypothesize that the ability to produce antibacterial compounds that principally inhibit non-Roseobacter species, combined with an enhancement in biofilm formation, may give members of the Roseobacter clade a selective advantage and help to explain the dominance of members of this clade in association with marine algal microbiota.  相似文献   

19.
Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates exhibit key characteristics of biofilms, including the presence of extracellular matrix and increased resistance to antibiotics compared to planktonic bacteria. Using isogenic mutants in the type III secretion system, we found that the translocon, but not the effectors themselves, were required for cell-associated aggregation on the surface of polarized epithelial cells and at early time points in a murine model of acute pneumonia. In contrast, the translocon was not required for aggregation on abiotic surfaces, suggesting a novel function for the type III secretion system during cell-associated aggregation. Supernatants from epithelial cells infected with wild-type bacteria or from cells treated with the pore-forming toxin streptolysin O could rescue aggregate formation in a type III secretion mutant, indicating that cell-associated aggregation requires one or more host cell factors. Our results suggest a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection.  相似文献   

20.
[Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms were less sensitive to treatment with amoxicillin and enrofloxacin than planktonic bacteria. Taken together, these findings provide a first step in understanding of the biofilm mechanisms in [P.] pneumotropica, which might contribute to elucidation of colonization and pathogenesis mechanisms for these obligate inhabitants of the mouse mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号