首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages are one of the most important HIV-1 target cells. Unlike CD4+ T cells, macrophages are resistant to the cytophatic effect of HIV-1. They are able to produce and harbor the virus for long periods acting as a viral reservoir. Candida albicans (CA) is a commensal fungus that colonizes the portals of HIV-1 entry, such as the vagina and the rectum, and becomes an aggressive pathogen in AIDS patients. In this study, we analyzed the ability of CA to modulate the course of HIV-1 infection in human monocyte-derived macrophages. We found that CA abrogated HIV-1 replication in macrophages when it was evaluated 7 days after virus inoculation. A similar inhibitory effect was observed in monocyte-derived dendritic cells. The analysis of the mechanisms responsible for the inhibition of HIV-1 production in macrophages revealed that CA efficiently sequesters HIV-1 particles avoiding its infectivity. Moreover, by acting on macrophages themselves, CA diminishes their permissibility to HIV-1 infection by reducing the expression of CD4, enhancing the production of the CCR5-interacting chemokines CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES, and stimulating the production of interferon-α and the restriction factors APOBEC3G, APOBEC3F, and tetherin. Interestingly, abrogation of HIV-1 replication was overcome when the infection of macrophages was evaluated 2-3 weeks after virus inoculation. However, this reactivation of HIV-1 infection could be silenced by CA when added periodically to HIV-1-challenged macrophages. The induction of a silent HIV-1 infection in macrophages at the periphery, where cells are continuously confronted with CA, might help HIV-1 to evade the immune response and to promote resistance to antiretroviral therapy.  相似文献   

2.
Neonates are highly sensitive to infections because they are biased to develop Th2 immune responses. When exposed to certain agents, such as DNA vaccines or CpG DNA motifs, neonates are capable to mount adult-like Th1 protective responses. This study investigates the capacity of Candida albicans (C. albicans) dsDNA to induce host resistance in newborn mice against gastrointestinal C. albicans infection. The protective properties of dsDNA are related to an increased number of spleen CD4+ T cells secreting IFN-γ. In infected DNA-treated mice, an enhanced production of IFN-γ by Peyer’s patch cells was observed together with reduced colonization and histopathological changes in the stomach. Our results indicated that C. albicans dsDNA administration in neonates elicited the protective immune response against gastrointestinal Candida infection.  相似文献   

3.
Candida yeasts are frequently isolated from patients with continuous ambulatory peritoneal dialysis peritonitis or other biomaterial-associated infections. The mouse model of candidal peritonitis was used to study the interaction of Candida cells with end-point attached heparinized polyethylene (H-PE) and with polymorphonuclear leukocytes (PMNs) or macrophages (Mφ). Two Candida strains differing in cell surface hydrophobicity and in expression of fibronectin (Fn) binding were used for the study. Cells of both Candida strains adhered at higher numbers to H-PE surfaces preadsorbed with Fn or with human dialysis fluid (HDF) than to non-modified H-PE, supporting a role of Fn in mediating adhesion. C. albicans 4016 cells expressing low hydrophobicity and low binding of soluble Fn demonstrated stronger adhesion to PMNs than the more hydrophobic C. albicans 3248 yeasts, which express high binding of soluble Fn. However, C. albicans 4016 cells were more resistant to phagocytic killing and were hardly eradicated in intraperitoneally infected mice. The animals depleted in PMNs by treatment with CY were neither able to eradicate C. albicans 3248 (rapidly eliminated by normal mice) nor C. albicans 4016 yeasts (with a tendency to persist in the tissues of normal mice).  相似文献   

4.

Objective

The protein Hwp1, expressed on the pathogenic phase of Candida albicans, presents sequence analogy with the gluten protein gliadin and is also a substrate for transglutaminase. This had led to the suggestion that C. albicans infection (CI) may be a triggering factor for Celiac disease (CeD) onset. We investigated cross-immune reactivity between CeD and CI.

Methods

Serum IgG levels against recombinant Hwp1 and serological markers of CeD were measured in 87 CeD patients, 41 CI patients, and 98 healthy controls (HC). IgA and IgG were also measured in 20 individuals from each of these groups using microchips sensitized with 38 peptides designed from the N-terminal of Hwp1.

Results

CI and CeD patients had higher levels of anti-Hwp1 (p=0.0005 and p=0.004) and anti-gliadin (p=0.002 and p=0.0009) antibodies than HC but there was no significant difference between CeD and CI patients. CeD and CI patients had higher levels of anti-transglutaminase IgA than HC (p=0.0001 and p=0.0039). During CI, the increase in anti-Hwp1 paralleled the increase in anti-gliadin antibodies. Microchip analysis showed that CeD patients were more reactive against some Hwp1 peptides than CI patients, and that some deamidated peptides were more reactive than their native analogs. Binding of IgG from CeD patients to Hwp1 peptides was inhibited by γIII gliadin peptides.

Conclusions

Humoral cross-reactivity between Hwp1 and gliadin was observed during CeD and CI. Increased reactivity to Hwp1 deamidated peptide suggests that transglutaminase is involved in this interplay. These results support the hypothesis that CI may trigger CeD onset in genetically-susceptible individuals.  相似文献   

5.
Disseminated candidiasis is associated with 30–40% mortality in severely immunocompromised patients. Among the causal agents, Candida albicans is the dominant one. Various animal models have been developed for investigating gene functions in C. albicans. Zebrafish injection models have increasingly been applied in elucidating C. albicans pathogenesis because of the conserved immunity, prolific fecundity of the zebrafish and the low costs of care systems. In this study, we established a simple, noninvasive zebrafish egg bath infection model, defined its optimal conditions, and evaluated the model with various C. albicans mutant strains. The deletion of SAP6 did not have significant effect on the virulence. By contrast, the deletion of BCR1, CPH1, EFG1, or TEC1 significantly reduced the virulence under current conditions. Furthermore, all embryos survived when co-incubated with bcr1/bcr1, cph1/cph1 efg1/efg1, efg1/efg1, or tec1/tec1 mutant cells. The results indicated that our novel zebrafish model is time-saving and cost effective.  相似文献   

6.
Candida albicans     
J Berman 《Current biology : CB》2012,22(16):R620-R622
  相似文献   

7.
8.
9.
Polymicrobial bacterial infections are commonly found in cases of Fournier gangrene (FG), although fungal growth may occur occasionally. Solitary fungal organisms causing FG have rarely been reported. The authors describe a case of an elderly man with a history of diabetes who presented with a necrotizing scrotal and perineal soft tissue infection. He underwent emergent surgical debridement with findings of diffuse urethral stricture disease and urinary extravasation requiring suprapubic tube placement. Candida albicans was found to be the single causative organism on culture, and the patient recovered well following antifungal treatment. Fungal infections should be considered as rare causes of necrotizing fasciitis and antifungal treatment considered in at-risk immunodeficient individuals.Key words: Fournier gangrene, Fournier’s Gangrene Severity Index, Candida albicansFournier gangrene (FG) is a rare, rapidly progressive, necrotizing infection of the perineum and genital area that was first described in 1883 by Jean Alfred Fournier in five young male patients.1 The infectious flora causing necrotizing fasciitis are typically polymicrobial, involving aerobic and anaerobic bacteria derived from gastrointestinal, genitourinary, and cutaneous sources.2,3 Certain predisposing conditions increase the risk of developing FG, including diabetes, chronic kidney disease, immunosuppression, local trauma, urethral stricture, or genitourinary infections.46It is essential to diagnose FG early and treat it emergently because the infection can quickly progress, with mortality rates of 7.5% to 50% cited in various series.7,8 Aggressive management involves hemodynamic stabilization, broad spectrum antibiotics to empirically cover all potential organisms, and wide surgical debridement.35 Early surgical debridement with excision of all nonviable tissue is the most important component of treatment. Multiple surgical debridements are often required, as the areas of cutaneous involvement may not indicate the full extent of subcutaneous disease.5Rapid initiation of broad spectrum antibiotic coverage is also necessary to stabilize the presenting patient with FG before and after surgical management. The infection is generally caused by three or more microorganisms, most commonly Escherichia coli, Proteus, Enterococcus, and anaerobes.4 Fungal etiologies of necrotizing infections are rare but have been increasingly reported in the literature.912 Candida species are commonly part of the normal flora in the gastrointestinal and genitourinary tracts of humans but may cause acute disease in the setting of compromised host immunity. This report describes a case of primary C albicans necrotizing fasciitis of the genitalia and reviews the literature regarding fungal FG to determine possible predisposing factors.  相似文献   

10.
Candida albicans colonizes the human gastrointestinal tract and can cause life-threatening systemic infection in susceptible hosts. We study here C. albicans virulence determinants using the nematode Caenorhabditis elegans in a pathogenesis system that models candidiasis. The yeast form of C. albicans is ingested into the C. elegans digestive tract. In liquid media, the yeast cells then undergo morphological change to form hyphae, which results in aggressive tissue destruction and death of the nematode. Several lines of evidence demonstrate that hyphal formation is critical for C. albicans pathogenesis in C. elegans. First, two yeast species unable to form hyphae (Debaryomyces hansenii and Candida lusitaniae) were less virulent than C. albicans in the C. elegans assay. Second, three C. albicans mutant strains compromised in their ability to form hyphae (efg1Δ/efg1Δ, flo8Δ/flo8Δ, and cph1Δ/cph1Δ efg1Δ/efg1Δ) were dramatically attenuated for virulence. Third, the conditional tet-NRG1 strain, which enables the external manipulation of morphogenesis in vivo, was more virulent toward C. elegans when the assay was conducted under conditions that permit hyphal growth. Finally, we demonstrate the utility of the C. elegans assay in a screen for C. albicans virulence determinants, which identified several genes important for both hyphal formation in vivo and the killing of C. elegans, including the recently described CAS5 and ADA2 genes. These studies in a C. elegans-C. albicans infection model provide insights into the virulence mechanisms of an important human pathogen.Candida albicans is the most common human fungal pathogen; however, our knowledge of its virulence mechanisms is incomplete, and our best antifungal agents are often ineffective in treating severe candidiasis (3). Infections with Candida species account for 70 to 90% of all invasive mycoses (32) and can be associated with devastating consequences, particularly in intensive care units where mortality rates reach 40% (24, 34). The drug resistance of pathogenic fungi exacerbates this problem and often limits therapeutic options (35). The identification of virulence pathways that can be targeted with novel antifungal therapies is urgently needed (31, 38, 46).One approach to understand the genetic mechanisms of virulence is to use invertebrates, such as the nematode Caenorhabditis elegans, as model hosts (43). Studies of C. elegans infection with Pseudomonas aeruginosa and Cryptococcus neoformans, for example, have led to the identification of evolutionarily conserved mechanisms of host immunity and microbial virulence (1, 21, 50). However, efforts to design an accurate nonmammalian model of C. albicans pathogenesis have been stymied, in part because it has been difficult to capture the role of Candida dimorphism in these systems.Morphogenesis in C. albicans is intricately related to pathogenesis and thus has been intensively studied. C. albicans hyphae are important for tissue destruction and host invasion (3). As such, C. albicans mutants and non-albicans Candida species that are unable to form true hyphae are attenuated for virulence (3, 37). However, C. albicans yeast cells also have virulence attributes (4, 33) that are likely involved in dissemination of the fungus through the bloodstream, and the establishment of infection at distant sites. To date, genetic screens to identify the determinants of Candida morphology have been conducted in vitro. Determining the role of these genes in virulence has traditionally involved separate and often laborious studies in mammals. Therefore, an expedient system to study morphogenesis of C. albicans in vivo and accurately model pathogenesis would offer many important advantages.Here, we study C. albicans pathogenesis using the invertebrate host C. elegans. C. albicans yeast cells are ingested into the gastrointestinal tract. In liquid media, the yeast cells form hyphae, which results in an aggressive infection that ultimately kills the nematode. Fungal hyphae destroy worm tissues and pierce the collagenous cuticle of the animal, a phenotype that is easily visible using a dissecting microscope. By studying mutants and genetically engineered C. albicans strains, we show that hyphal formation is required for full virulence in this system. Finally, we illustrate the utility of the C. elegans-C. albicans infection assay in a screen for genes involved in Candida morphogenesis and virulence.  相似文献   

11.
12.
We sought to define protective mechanisms of immunity to Staphylococcus aureus and Candida albicans bloodstream infections in mice immunized with the recombinant N-terminus of Als3p (rAls3p-N) vaccine plus aluminum hydroxide (Al(OH3) adjuvant, or adjuvant controls. Deficiency of IFN-γ but not IL-17A enhanced susceptibility of control mice to both infections. However, vaccine-induced protective immunity against both infections required CD4+ T-cell-derived IFN-γ and IL-17A, and functional phagocytic effectors. Vaccination primed Th1, Th17, and Th1/17 lymphocytes, which produced pro-inflammatory cytokines that enhanced phagocytic killing of both organisms. Vaccinated, infected mice had increased IFN-γ, IL-17, and KC, increased neutrophil influx, and decreased organism burden in tissues. In summary, rAls3p-N vaccination induced a Th1/Th17 response, resulting in recruitment and activation of phagocytes at sites of infection, and more effective clearance of S. aureus and C. albicans from tissues. Thus, vaccine-mediated adaptive immunity can protect against both infections by targeting microbes for destruction by innate effectors.  相似文献   

13.
A surface plasmon resonance (SPR) biosensor-based strategy for identification and characterization of compounds has been devised as a tool for the discovery of specific drugs for treatment of Candida albicans infections. Three secreted aspartic proteases (Saps 1-3) from C. albicans were used as parallel targets. The stepwise procedure involved screening of 104 HIV-1 pro-tease inhibitors at a single concentration for binding to the targets. Twenty-four compounds that appeared to interact with the targets were identified in the screen. False positives and compounds with low affinities or very fast dissociation rates could be removed after a series of additional measurements of these compounds at 3 different concentrations. Kinetic characterization was performed with 13 compounds, giving information about the interaction mechanism and interaction kinetic parameters (k(on), k(off), and K(D)). The pH dependence of the interaction and the inhibitory effect of a final small set of compounds were also evaluated. The strategy resulted in the identification of ritonavir as the compound generally exhibiting the highest affinity for the Candida enzymes. It had similar interaction kinetic characteristics for Sap 1 and Sap 2 but a lower affinity for Sap 3 due to a slower association rate. Several additional compounds with high affinity and/or slow dissociation rates for the targets were identified, revealing 2 other structural scaffolds for Sap inhibitors. In addition, important differences in the specificity for these types of compounds by the Saps were identified. The stepwise biosensor-based strategy was consequently efficient for identification and characterization of new lead compounds for 3 important drug targets.  相似文献   

14.
白念珠菌高铁还原酶FRP1基因的功能   总被引:1,自引:0,他引:1  
白念珠菌((Candida albicans)获得铁的能力影响细胞的生长和毒力,高铁还原酶是白念珠菌高亲和铁吸收系统的重要组成部分.[目的]构建高铁还原酶FRP1(Ferric reductase protein)基因缺失突变株,对FRP1基因功能进行初步研究.[方法]使用Northem杂交的方法分析FRP1基因在缺铁和富铁条件下的表达.利用PCR介导的基因敲除技术构建frp1缺失突变株,并且对野生型和缺失突变株在细胞高铁还原酶活性以及缺铁条件下的生长情况进行比较分析.[结果]缺铁条件可以诱导FRP1基因的表达.frp1缺失突变株不能在铁缺陷的固体培养基上生长.[结论]FRP1蛋白可能是白念珠菌在缺铁条件下起主要作用的高铁还原酶.  相似文献   

15.
16.
Immunological memory in vertebrates is often exclusively attributed to T and B cell function. Recently it was proposed that the enhanced and sustained innate immune responses following initial infectious exposure may also afford protection against reinfection. Testing this concept of "trained immunity," we?show that mice lacking functional T and B lymphocytes are protected against reinfection with Candida albicans in a monocyte-dependent manner. C.?albicans and fungal cell wall β-glucans induced functional reprogramming of monocytes, leading to enhanced cytokine production in?vivo and in?vitro. The training required the β-glucan receptor dectin-1 and the noncanonical Raf-1 pathway. Monocyte training by β-glucans was associated with stable changes in histone trimethylation at H3K4, which suggests the involvement of epigenetic mechanisms in this phenomenon. The functional reprogramming of monocytes, reminiscent of similar NK cell properties, supports the concept of "trained immunity" and may be employed for the design of improved vaccination strategies.  相似文献   

17.
Characterization of CARE-1: Candida albicans repetitive element-1   总被引:6,自引:0,他引:6  
A middle repetitive DNA element, Candida albicans repetitive element-1 (CARE-1) has been isolated from the pathogenic yeast C. albicans. CARE-1 appears to be species-specific and constitutes approx. 0.045% of total C. albicans DNA, or a reiteration frequency of about two to twelve copies per haploid genome. The CARE-1 element has been detected on several C. albicans chromosomes separated by field-inversion gel electrophoresis, suggesting that the element is dispersed. Interstrain variation was observed in the number and distribution of hybridizing bands. The element is well conserved, since no nucleotide (nt) heterogeneity was observed when the sequences of two CARE-1 family members isolated from two different chromosomes (A and B) of C. albicans were compared. CARE-1 possesses 467 bp and is characterized by several stretches of A's and T's, short direct repeats and shows no significant homology to any known nt sequence.  相似文献   

18.
Abstract Protoplasts from auxotrophic mutants of Candida albicans and Candida tropicalis were produced by snail enzyme treatment and their fusion was induced with polyethylene glycol (PEG). During selective regeneration, nutritionally complemented interspecific hybrids were obtained. Their cells contained one nucleus, and the DNA content per cell was higher than in the parents. The isoenzymic and sugar assimilation patterns of the mutants, and those of the hybrids and the products after their haploidisation, were also analysed. The results indicated that the hybrids were partial alloploids containing the total chromosomal set of either of the parental species and one or a few chromosomes of the other.  相似文献   

19.
We have previously observed that the infection of HEp2 epithelial cells with Candida albicans results in HEp2 cell actin rearrangement, and that a culture filtrate of C. albicans (Candida metabolite) caused the same changes and reduced membrane ruffling and motility. It was found that the Candida metabolite consisted of several proteins and nonproteinaceous components. In this study we report on the identity of three of the main proteins in the Candida metabolite, namely a secretory aspartate protease (Sap), an agglutinin-like adhesion sequence (Als) and a glucan 1,3-beta-glucosidase. The effect on HEp2 cells caused by the Candida metabolite, an inhibitor of the PKC MAP kinase signal pathway - bisindolylmaleimide (BIM), or the actin polymerization inhibitor - cytochalasin D (CyD) were studied alone and in combination. Exposure of HEp2 cells to the Candida metabolite, together with the BIM or CyD, had profound effects on HEp2 cell morphology, as compared to individually treated cells, and also reduced the adherence of the organisms to HEp2 cells. Our results show that the interaction of C. albicans with HEp2 cells is, not unexpectedly, complex, and involves changes in the host cell that may be related to the effect of Candida-secreted biomolecules.  相似文献   

20.
Summary Subcultures ofC. albicans, made from Sabouraud agar, grown at room temperature for 48 hours, were inoculated into a 10 times saline dilution of Sabouraud liquid medium and left in the incubator for 45–60 minutes at 37° C, transferred to corn meal agar plates and incubated at 37° C for 18–24 hours.Small portions of the surface agar containing the yeasts from these plates were pressed under cover glasses and examined under the oil immersion lens.Under these conditions,C. albicans cultures were observed to produce only yeast-like cells, whereasC. stellatoidea cultures contained predominantly abundant, long, thin mycelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号