首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties of collagen fibrils   总被引:1,自引:0,他引:1  
The formation of collagen fibers from staggered subfibrils still lacks a universally accepted model. Determining the mechanical properties of single collagen fibrils (diameter 50-200 nm) provides new insights into collagen structure. In this work, the reduced modulus of collagen was measured by nanoindentation using atomic force microscopy. For individual type 1 collagen fibrils from rat tail, the modulus was found to be in the range from 5 GPa to 11.5 GPa (in air and at room temperature). The hypothesis that collagen anisotropy is due to the subfibrils being aligned along the fibril axis is supported by nonuniform surface imprints performed by high load nanoindentation.  相似文献   

2.
The collagen fibrils of cornea, blood vessel walls, skin, gut, interstitial tissues, the sheath of tendons and nerves, and other connective tissues are known to be made of helically wound subfibrils winding at a constant angle to the fibril axis. A critical aspect of this model is that it requires the axial microfibrils to warp in an implausible way. This architecture lends itself quite naturally to an epitaxial layout where collagen microfibrils envelop a central core of a different nature. Here we demonstrate an axial domain in collagen fibrils from rabbit nerve sheath and tendon sheath by means of transmission electron microscopy after a histochemical reaction designed to evidence all polysaccharides and by tapping-mode atomic force microscopy. This axial domain was consistently found in fibrils with helical microfibrils but was not observed in tendon, whose microfibrils run longitudinal and parallel.  相似文献   

3.
Wen CK  Goh MC 《Proteins》2006,64(1):227-233
Nanodissection of single fibrous long spacing (FLS) type collagen fibrils by atomic force microscopy (AFM) reveals hierarchical internal structure: Fibrillar subcomponents with diameters of approximately 10 to 20 nm were observed to be running parallel to the long axis of the fibril in which they are found. The fibrillar subcomponent displayed protrusions with characteristic approximately 270 nm periodicity, such that protrusions on neighboring subfibrils were aligned in register. Hence, the banding pattern of mature FLS-type collagen fibrils arises from the in-register alignment of these fibrillar subcomponents. This hierarchical organization observed in FLS-type collagen fibrils is different from that previously reported for native-type collagen fibrils, displaying no supercoiling at the level of organization observed.  相似文献   

4.
The distribution and orientation of collagen fibrils, and apatite crystals, in the scales of a bony fish (Leuciscus cephalus) were investigated by X-ray diffraction. The small-angle diffraction patterns obtained with a microfocus scanning setup from most of the examined areas exhibit a distribution of intensity of the collagen reflections according to five preferential orientations, at 36 degrees from one another. It is suggested that the peculiar small-angle X-ray diffraction pattern is due to a plywood arrangement of collagen fibrils in successive layers parallel to the surface of the scale. The fibrils are strictly aligned in each layer and the alignment rotates by 36 degrees in successive layers, according to a discontinuous twist that generates a symmetric plywood pattern. The large spread of the wide-angle reflections does not allow one to distinguish the five directions of orientation in the intensity distribution of the 002 reflection of apatite. However, the patterns recorded from the less ordered regions of the scales display two different orientations of the 002 reflection and allow one to infer a preferential distribution of the apatite crystals with their c-axes parallel to the collagen fibrils. Although much electron microscopic evidence of plywood arrangements in calcified, as well as uncalcified, tissues has been reported, these are the very first diffraction data which unambiguously confirm the presence of these peculiar structures and suggest that this kind of investigation represents a powerful tool with which to study plywood arrangements in biological tissues.  相似文献   

5.
We have compared the axial structures of negatively stained heterotypic, type II collagen-containing fibrils with computer-generated staining patterns. Theoretical negative-staining patterns were created based upon the "bulkiness" of the individual amino acid side-chains in the primary sequence and the D-staggered arrangement of the triple-helices. The theoretical staining pattern of type II collagen was compared and cross-correlated with the experimental staining pattern of both reconstituted type II collagen fibrils, and fibrils isolated from adult and foetal cartilage and vitreous humour. The isolated fibrils differ markedly in both diameter and composition. Correlations were significantly improved when a degree of theoretical hydroxylysine glycosylation was applied, showing for the first time that this type of glycosylation influences the negative-staining pattern of collagen fibrils. Increased correlations were obtained when contributions from types V/XI and IX collagen were included in the simulation model. The N-propeptide of collagen type V/XI and the NC2 domain of type IX collagen both contribute to prominent stain-excluding peaks in the gap region. With decreasing fibril diameter, an increase of these two peaks was observed. Simulations of the fibril-derived staining patterns with theoretical patterns composed of proportions of types II, V/XI and IX collagen confirmed that the thinnest fibrils (i.e. vitreous humour collagen fibrils) have the highest minor collagen content. Comparison of the staining patterns showed that the organisation of collagen molecules within vitreous humour and cartilage fibrils is identical. The simulation model for vitreous humour, however, did not account for all stain-excluding mass observed in the staining pattern; this additional mass may be accounted for by collagen-associated macromolecules.  相似文献   

6.
The standard model for the structure of collagen in tendon is an ascending hierarchy of bundling. Collagen triple helices bundle into microfibrils, microfibrils bundle into subfibrils, and subfibrils bundle into fibrils, the basic structural unit of tendon. This model, developed primarily on the basis of x-ray diffraction results, is necessarily vague about the cross-sectional organization of fibrils and has led to the widespread assumption of laterally homogeneous closepacking. This assumption is inconsistent with data presented here. Using atomic force microscopy and micromanipulation, we observe how collagen fibrils from tendons behave mechanically as tubes. We conclude that the collagen fibril is an inhomogeneous structure composed of a relatively hard shell and a softer, less dense core.  相似文献   

7.
The present article describes the three-dimensional arrangement of collagen fibrils in dermal plates of different species of Ostraciidae. These dermal plates or 'scutes' are transformed scales, which have a polygonal shape and form a rigid tiling. They are natural composites, associating a fibrous network with a mineral deposit lying at two different levels of the scute, the 'ceiling' and the 'floor', plus a set of similarly mineralized walls joining the two levels. The three-dimensional structure of the collagen network can be compared to that of 'plywood': fibrils align parallel within superposed layers of uniform thickness, and their direction changes from layer to layer. In the dermal plate, two types of plywood have been evidenced: (1) one lying between the two mineralized plates, where the orientation of fibrils rotates continuously, and (2) one under the lower plate, with thick layers of fibrils, each showing a constant orientation, but abrupt angular changes are observed at the transition from one layer to the following one. In oblique sections, both types of plywood reveal large series of arced patterns, testifying to a twisted arrangement of collagen fibrils, analogous to the arrangement of molecules or polymers in cholesteric liquid crystals. The network is reinforced by some collagen fibrils running unidirectionally and almost normally to the lamellate structure. Moreover in the overall organization of the scute, these plywood systems form a set of nested boxes. This original architecture is compared to the arrangement of the collagenous network previously described in most fish scales and in other extracellular matrices.  相似文献   

8.
Veres SP  Lee JM 《Biophysical journal》2012,102(12):2876-2884
Collagen fibrils are nanostructured biological cables essential to the structural integrity of many of our tissues. Consequently, understanding the structural basis of their robust mechanical properties is of great interest. Here we present what to our knowledge is a novel mode of collagen fibril disruption that provides new insights into both the structure and mechanics of native collagen fibrils. Using enzyme probes for denatured collagen and scanning electron microscopy, we show that mechanically overloading collagen fibrils from bovine tail tendons causes them to undergo a sequential, two-stage, selective molecular failure process. Denatured collagen molecules-meaning molecules with a reduced degree of time-averaged helicity compared to those packed in undamaged fibrils-were first created within kinks that developed at discrete, repeating locations along the length of fibrils. There, collagen denaturation within the kinks was concentrated within certain subfibrils. Additional denatured molecules were then created along the surface of some disrupted fibrils. The heterogeneity of the disruption within fibrils suggests that either mechanical load is not carried equally by a fibril's subcomponents or that the subcomponents do not possess homogenous mechanical properties. Meanwhile, the creation of denatured collagen molecules, which necessarily involves the energy intensive breaking of intramolecular hydrogen bonds, provides a physical basis for the toughness of collagen fibrils.  相似文献   

9.
Collagen fibrils were obtained in vitro by aggregation from acid-soluble type I collagen at different initial concentrations and with the addition of decorin core or intact decorin. All specimens were observed by scanning electron microscopy and atomic force microscopy. In line with the findings of other authors, lacking decorin, collagen fibrils undergo an extensive lateral association leading to the formation of a continuous three-dimensional network. The addition of intact decorin or decorin core was equally effective in preventing lateral fusion and restoring the normal fibril appearance. In addition, the fibril diameter was clearly dependent on the initial collagen concentration but not on the presence/absence of proteoglycans. An unusual fibril structure was observed as a result of a very low initial collagen concentration, leading to the formation of huge, irregular superfibrils apparently formed by the lateral coalescence of lesser fibrils, and with a distinctive coil-structured surface. Spots of incomplete fibrillogenesis were occasionally found, where all fibrils appeared made of individual, interwined subfibrils, confirming the presence of a hierarchical association mechanism.  相似文献   

10.
Collagen fibres from rat tail tendon suspended in small pieces in a solution (pH 7.8) containing 0.5 M CaCl2 were treated with purified bovine trypsin at 20 degrees C for 20 h. After the enzyme treatment collagen from this solution was precipitated out and reconstituted in vitro into native-type fibrils. The banding pattern in these reconstituted fibrils was found to be oblique. This is comparable to that observed recently in fibrils reconstituted from cartilage collagen. On the other hand, normal transverse banding pattern was observed in the fibrils reconstituted in vitro from collagen solution of rat tail tendon which was not pre-treated with trypsin. No significant change was, however, observed in the segment long spacing fibrils precipitated from the enzyme-treated collagen solution. It is possible that the enzyme might affect the mode of organization of tropocollagen molecules during in vitro fibrillogenesis into native-type fibrils either by interacting with the "telopeptide" regions or with the non-collagenous components associated with the native protein and this could probably result into the formation of fibrils with oblique banding pattern.  相似文献   

11.
Fragments of native, hydrated rat tail tendon were imaged by tapping-mode atomic force microscopy while immersed in fluid. The specimens were soft and sensitive to the operating parameters, and with minimal imaging pressure the collagen fibrils appeared covered by irregular blobs or by filamentous material. A slight increase in pressure caused the underlying fibril surface to appear, with an evident D-period, gap- and overlap-zones and three intraperiod ridges. Fibrils often ran parallel and in phase, implying some coupling mechanism. Longitudinal subfibrils, 8-9 nm thick, occasionally appeared. The simultaneous acquisition of the "tapping amplitude" along with the usual "height" channel clearly confirmed the presence of longitudinal subfibrils, indicative of the inner architecture of the fibril.  相似文献   

12.
Variation of collagen fibril structure in tendon was investigated by x-ray diffraction. Anatomically distinct tendons from single species, as well as tendons from different species, were examined to determine the variations that exist in both the axial and lateral structure of the collagen fibrils. The meridional diffraction is derived from the axial collagen fibril structure. Anatomically distinct tendons of a particular species give meridional patterns that are indistinguishable within experimental error. The meridional diffraction patterns from tendons of different mammals are similar but show small species-specific variations, most noticeably in the 14th–18th orders. Tendons of birds also give meridional patterns that are similar to each other, but the avian patterns differ considerably from the mammalian ones. Avian tendons give stronger odd and weaker even low orders, a feature consistent with a reduced gap:overlap ratio, and have a distinctive intensity pattern for the higher meridional orders. Interpretation of these differences has been approached using biochemical data, diffraction by reconsituted fibers of purified collagen, and Fourier transform analysis. From these methods, it appears that the variations observed in the lower orders (2nd–8th) and in the higher orders (29th–52nd) are probably related to differences in the primary structure of the Type I collagen found in the different species. The variations observed in the 14th–18th orders appear not to be related to features within the triple-helical domain of the molecule. Equatorial diffraction yields information on the lateral packing of collagen molecules in the fibrils, and considerable variation was seen in different tendons. Rat tail tendon gives sharp Bragg reflections, demonstrating the presence of a crystalline lateral arrangement of molecules in the fibril. For the first time, sharp lattice reflections similar to those in rat tail tendon have been observed in nontail tendons, including rat achilles tendon, rabbit leg tendon, and wing and leg tendons of quail. In the rabbit and quail tendons, one of the strong equatorial reflections characteristic of the rat tendon pattern, at 1.26 nm, was absent. The positions of the equatorial maxima, which are a measure of intermolecular spacing, varied considerably, being smallest in the specimens displaying crystalline packing. The intermolecular distance in chiken and turkey leg tendons is longer than that found in mammalian tendons, or in avian wing tendons, which supports the hypothesis that a larger intermolecular spacing is characteristic of tendons that calcify. Thus, x-ray diffraction indicates there are reproducible differences in both the axial and lateral structure of collagen fibrils among different tendons. This work on tendon, a tissue containing almost exclusively Type I collagen as its major component, should serve as a basis for analyzing the structure of other connective tissues, which contain different genetic types of collagen and larger amounts of noncollagenous components.  相似文献   

13.
Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 105 nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 105 nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.  相似文献   

14.
Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 105 nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 105 nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.  相似文献   

15.
The polymorphic forms of ordered collagen aggregation in vitro and in vivo are reviewed. The axially projected structures of a class of fibrils known as fibrous long spacing (FLS) collagen are solved using simulated positively stained banding patterns based on the amino acid sequence. This method is also used to solve the axial projection of a 670 Å (D) periodic structure with a symmetrical banding pattern (DPS) re-precipitated from skin collagen. The relation between the obliquely striated and 110 Å periodic forms of collagen is discussed. The specificity for the formation of FLS, DPS and segment long spacing (SLS) collagen is shown to be in the distributions of various amino acids in the sequence. Different residues are important for each type of structure, their importance being dependent on the chemical conditions and the presence of other macromolecules. The interaction of collagen fibrils with proteoglycans in vivo is discussed in terms of the amino acid sequence. Also the factors which affect collagen morphology in the presence of mucopolysaccharides and proteoglycans in vitro and in vivo are discussed. Some insight is gamed into the principles which govern the self-assembly of molecules into ordered fibrous aggregates.  相似文献   

16.
Radial packing, order, and disorder in collagen fibrils.   总被引:9,自引:2,他引:7       下载免费PDF全文
Collagen fibrils resemble smectic, liquid crystals in being highly ordered axially but relatively disordered laterally. In some connective tissues, x-ray diffraction reveals three-dimensional crystallinity in the molecular packing within fibrils, although the continued presence of diffuse scatter indicates significant underlying disorder. In addition, several observations from electron microscopy suggest that the molecular packing is organized concentrically about the fibril core. In the present work, theoretical equatorial x-ray diffraction patterns for a number of models for collagen molecular packing are calculated and compared with the experimental data from tendon fibrils. None of the models suggested previously can account for both the crystalline Bragg peaks and the underlying diffuse scatter. In addition, models in which any of the nearest-neighbor, intermolecular vectors are perpendicular to the radial direction are inconsistent with the observed radial orientation of the principal approximately 4 nm Bragg spacing. Both multiple-start spiral and concentric ring models are devised in which one of the nearest-neighbor vectors is along the radial direction. These models are consistent with the radial orientation of the approximately 4 nm spacing, and energy minimization results in radially oriented crystalline domains separated by disordered grain boundaries. Theoretical x-ray diffraction patterns show a combination of sharp Bragg peaks and underlying diffuse scatter. Close agreement with the observed equatorial diffraction pattern is obtained. The concentric ring model is consistent with the observation that the diameters of collagen fibrils are restricted to discrete values.  相似文献   

17.
The composite structure of secondary osteon lamellae, key micro-mechanical components of human bone, has intrigued researchers for the last 300 years. Scanning confocal microscopy here for the first time systematically quantifies collagen orientations by location within the lamellar thickness. Fully calcified lamellar specimens, extinct or bright in cross-section under circularly polarized light, were gently flattened, and then examined along their thickness direction, the radial direction in the previously embedding osteon. Collagen orientation was measured from confocal image stacks. So-called extinct lamellae and so-called bright lamellae are found to display distinct, characteristic patterns of collagen orientation distribution. Orientations longitudinal to the osteon axis in extinct lamellae, transverse to the osteon axis in bright lamellae, and oblique to the osteon axis in both lamellar types, show parabolic distribution through specimen thickness. Longitudinal collagen in extinct lamellae, and transverse collagen in bright lamellae, peaks at middle third of lamellar thickness, while oblique collagen peaks at outer thirds of both types. Throughout the thickness, longitudinal collagen orientations characterize extinct lamellar specimens, while orientations oblique to the original osteon axis characterize bright lamellar specimens. Measured patterns complement previous indirect results by different methods and reinforce previously hypothesized differences in lamellar mechanical functions.  相似文献   

18.
The periodical D-band pattern is generally considered a unique ultrastructural feature shared by all fibril-forming collagens, which correlates with the intrafibril, paracrystalline array of tropocollagen monomers. Distinct band patterns have been reported, however, for collagen stained long-spacing (SLS) crystallites of genetic types I, II, and III. Moreover, D-band patterns of negatively stained, native type II collagen fibrils were found to be not identical to those of type I in our previous research. Because of (a) these distinctive features, (b) tropocollagen heterotrimeric conditions (type I) vs homotrimeric conditions (type II), and (c) different lengths and poor homology between extrahelical telopeptides, the molecular array or telopeptide conformation within the extensively studied type I collagen fibrils could be not the same as those in the very much less intensively studied type II collagen fibrils. In this investigation, a distinctive positive-staining D-band pattern was found for type II collagen fibrils obtained from human cartilages. A fibril model was developed by analyzing actual D-band patterns, and matching them against simulated patterns based on the primary structure of extrahelical and helical domains in human type II tropocollagen. In particular, a more prominent b(1) band was apparent in native type II collagen fibrils than in type I. This distinctive feature was also observed for native-type collagen fibrils reconstituted from purified type II collagen, i.e., free from associated minor type XI collagen. On modeling possible monomer arrays, the best fit between microdensitograms and simulation traces was found for 234 amino acid staggering, as is also the case for type I collagen fibrils. On comparing this model with an analogous one for type I collagen fibrils, there was a higher intraband distribution of charged residues for band b(1), consistent with the higher electrondensity observed for this band in type II collagen fibrils. N- and C-telopeptide displacement in the model corresponded to D-locations of a c(2) subband, which we named c(2.0), and band a(3), respectively. In simulation profiles, c(2.0) -like and a(3) -like peaks mimicked the corresponding peaks in microdensitograms when molecular reversals were adopted at positions 10N-12N, 12C-14C, and 17C-19C for N- and C-telopeptides. Hydrophobic interactions and algorithmic predictions of protein secondary structure, according to Chou and Fasman and Rost and Sander criteria, were consistent with these conformational models, and suggest that an additional molecular reversal may occur at positions 3N-5N. These telopeptide "S-fold" conformations, interpreted as axial projections of tridimensional conformation, may represent starting points for further investigation into the still unresolved tridimensional conformation of telopeptides in monomers arrayed within type II collagen fibrils.  相似文献   

19.
Simulated negative staining patterns of collagen fibrils were prepared for visual display by a graphical procedure in which amino acid side-chains along the staggered molecules were weighted according to their stain-excluding capacity. The simulated patterns were then compared directly with electron-optical images of collagen fibrils negatively stained with sodium phosphotungstate or lithium tungstate. These visual comparisons confirm previous observations that satisfactory matching occurs when side-chains are weighted according to their ‘bulkiness’ (average cross-sectional area or ‘plumpness’). Optimal matching at the edges of the overlap zones occurred when a hairpin-like conformation was assumed for the N-terminal telopeptides and a condensed conformation for the hydrophobic part of the C-terminal telopeptides. The negative staining pattern is known to include some element of positive staining; visual matching suggests that this additional uptake of positive staining ions occurs predominantly in the more accessible gap zone in a fibril D-period. A slight mismatching between observed and simulated patterns can be understood if the gap zone suffers greater axial shrinkage than the overlap zone when specimens are prepared for electron microscopy.  相似文献   

20.
The fine structure of the collagen fibril, as seen in axial projection, is changed by treatment with glutaraldehyde. The changes are detectable in electron-optical staining patterns and in the intensities of the low-angle meridional X-ray diffraction maxima. Current knowledge of the amino acid sequence of collagen and of the axial arrangement of molecules in fibrils permits interpretation in terms of specific alterations to the axial distribution of electron density along the fibril. Analysis of fibril staining patterns from glutaraldehyde-treated calf skin collagen shows that uptake of staining ions in positive staining patterns is inhibited at residues known to interact with glutaraldehyde (lysyl, hydroxylysyl and probably histidyl side-chains) and on other charged residues in the immediate neighbourhood of the glutaraldehyde-reactive residues. This can be seen as a "stain-exclusion effect" due to the presence of bulky polymeric complexes of glutaraldehyde molecules at cross-linking sites. Such stain exclusion accounts for the drastic changes in the negative staining pattern following treatment with glutaraldehyde. The intensity changes observed in the low-angle meridional X-ray reflections from rat tail tendon, similarly treated, also can be explained by the presence of these bulky complexes. Existing data have been used to predict a model of the altered electron density profile indicating the axial distribution of glutaraldehyde along a D-period of moist tendon collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号