首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The osteoblast is the bone forming cell and is derived from mesenchymal stem cells (MSC) present among the bone marrow stroma. MSC are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts and adipocytes. Understanding the mechanisms underlying osteoblast differentiation from MSC is a central topic in bone biology that can provide insight into mechanisms of bone maintenance and also novel pharmacological targets to increase osteoblast differentiation and consequently bone formation.  相似文献   

2.
A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self-renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell-based strategies owing to their intrinsic capacity to self-renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy.  相似文献   

3.
Mesenchymal stem cells (MSCs) are a subset of multipotent stroma cells residing in various tissues of the body. Apart from supporting the hematopoietic stem cell niche, MSCs possess strong immunoregulatory ability and multiple differentiation potentials. These powerful capacities allow the extensive application of MSCs in clinical practice as an effective treatment for diseases. Therefore, illuminating the functional mechanism of MSCs will help to improve their curative effect and promote their clinical use. Long noncoding RNA (LncRNA) is a novel class of noncoding RNA longer than 200 nt. Recently, multiple studies have demonstrated that LncRNA is widely involved in growth and development through controlling the fate of cells, including MSCs. In this review, we highlight the role of LncRNA in regulating the functions of MSCs and discuss their participation in the pathogenesis of diseases and clinical use in diagnosis and treatment.  相似文献   

4.
Tissue engineering (TE) has emerged as a promising new therapy for the treatment of damaged tissues and organs. Adult stem cells are considered as an attractive candidate cell type for cell-based TE. Mesenchymal stem cells (MSC) have been isolated from a variety of tissues and tested for differentiation into different cell lineages. While clinical trials still await the use of human MSC, horse tendon injuries are already being treated with autologous bone marrow-derived MSC. Given that the bone marrow is not an optimal source for MSC due to the painful and risk-containing sampling procedure, isolation of stem cells from peripheral blood would bring an attractive alternative. Adherent fibroblast-like cells have been previously isolated from equine peripheral blood. However, their responses to the differentiation conditions, established for human bone marrow MSC, were insufficient to fully confirm their multilineage potential. In this study, differentiation conditions were optimized to better evaluate the multilineage capacities of equine peripheral blood-derived fibroblast-like cells (ePB-FLC) into adipogenic, osteogenic, and chondrogenic pathways. Adipogenic differentiation using rabbit serum resulted in a high number of large-size lipid droplets three days upon induction. Cells' expression of alkaline phosphatase and calcium deposition upon osteogenic induction confirmed their osteogenic differentiation capacities. Moreover, an increase of dexamethasone concentration resulted in faster osteogenic differentiation and matrix mineralization. Finally, induction of chondrogenesis in pellet cultures resulted in an increase in cartilage-specific gene expression, namely collagen II and aggrecan, followed by protein deposition after a longer induction period. This study therefore demonstrates that ePB-FLC have the potential to differentiate into adipogenic, osteogenic, and chondrogenic mesenchymal lineages. The presence of cells with confirmed multilineage capacities in peripheral blood has important clinical implications for cell-based TE therapies in horses.  相似文献   

5.
间充质干细胞是一类能够自我更新、具有多向分化潜能的成体干细胞。近年来,有证据认为间充质干细胞是肿瘤组织中基质细胞的祖先,因此间充质干细胞微环境与肿瘤转移的关系逐渐成为研究热点,但间充质干细胞对肿瘤转移是促进还是抑制,目前的研究并不一致。我们简要综述了间充质干细胞参与肿瘤转移的研究进展。  相似文献   

6.
The expansion potential and plasticity of stem cells, adult or embryonic, offer great promise for their use in medical therapies. Recent provocative data suggest that the differentiation potential of adult stem cells may extend to lineages beyond those usually associated with the germ layer of origin. In this review, we describe recent developments related to adult stem cell research and in particular, in the arena of mesenchymal stem cell (MSC) research. Research demonstrates that transduced MSCs injected into skeletal muscle can persist and express secreted gene products. The ability of the MSC to differentiate into cardiomyocytes has been reported and their ability to engraft and modify the pathology in infarcted animal models is of great interest. Research using MSCs in tendon repair provides information on the effects of physical forces on phenotype and gene expression. In turn, MSCs produce changes in their matrix environment in response to those biomechanical forces. Recent data support the potential of MSCs to repair tendon, ligament, meniscus and other connective tissues. Therapeutic applications of adult stem cells are approaching clinical use in several fields, furthering the possibility to regenerate damaged and diseased tissue.  相似文献   

7.
Tumor progression is a multistep phenomenon in which tumor-associated stromal cells perform an intricate cross-talk with tumor cells, supplying appropriate signals that may promote tumor aggressiveness. Among several cell types that constitute the tumor stroma, the discovery that bone marrow-derived mesenchymal stem cells (BM-MSC) have a strong tropism for tumors has achieved notoriety in recent years. Not only are the BM-MSC recruited, but they can also engraft at tumor sites and transdifferentiate into cells such as activated fibroblasts, perivascular cells and macrophages, which will perform a key role in tumor progression. Whether the BM-MSC and their derived cells promote or suppress the tumor progression is a controversial issue. Recently, it has been proposed that proinflammatory stimuli can be decisive in driving BM-MSC polarization into cells with either tumor-supportive or tumor-repressive phenotypes (MSC1/MSC2). These considerations are extremely important both to an understanding of tumor biology and to the putative use of BM-MSC as “magic bullets” against tumors. In this review, we discuss the role of BM-MSC in many steps in tumor progression, focusing on the factors that attract BM-MSC to tumors, BM-MSC differentiation ability, the role of BM-MSC in tumor support or inhibition, the immunomodulation promoted by BM-MSC and metastatic niche formation by these cells.  相似文献   

8.
Mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs) emerge as promising tools for tissue engineering, cell therapy, and drug screening. Their potential use in clinical applications requires the efficient production of differentiated cells at large scale. Glucose, amino acid, and oxygen metabolism play a key role in MSC and PSC expansion and differentiation. This review summarizes recent advances in the understanding of stem cell metabolism for reprogramming, self-renewal, and lineage commitment. From the reported data, efficient expansion of stem cells has been found to rely on glycolysis, while during differentiation stem cells shift their metabolic pathway to oxidative phosphorylation. During reprogramming, the reverse metabolic shift from oxidative phosphorylation to glycolysis has been observed. As a consequence, the demands for glucose and oxygen vary upon different phases of stem cell production. Accurate understanding of stem cell metabolism is critical for the rational design of culture parameters such as oxygen tension and feeding regime in bioreactors towards efficient integrated reprogramming, expansion, and differentiation processes at large scale.  相似文献   

9.
Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.  相似文献   

10.
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.  相似文献   

11.
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC‐based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage‐specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:468–481, 2015  相似文献   

12.
Bone marrow stroma contains mesenchymal stem cells (MSC) which are progenitor cells, at least for tissues arising from mesechyma. The study of MSC biology yields controversial data. Therefore further experiments are needed to characterize these cells. The aim of our research was to compare primary cultures and subcultures of stromal precursor cells isolated from rat bone marrow. Long-term cultures of these cells isolated from 5 animals have been obtained. Morphological, immunophenotypic, and functional (capacity to osteogenic differentiation) characteristics of the cells have been investigated. We show that the cell morphology in the cultures is highly heterogenic. Morphological cell types are described. Heterogeneity of stromal cells declines on late passages. Cell cultures isolated from different animals have the same immunophenotypic markers (CD90, CD44, CD54, CD106, CD45, CD11b) but different morphological characteristics and a different capacity to osteogenic differentiation during long-term cultivation. The data show that more specific markers and functional tests should be applied to identify MSC.  相似文献   

13.
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.  相似文献   

14.
Adipose tissue contains many cells and proteins that are of value not only for their potential therapeutic applications, but also for the low cost of their harvest and delivery. Mesenchymal stem cells (MSC) were originally isolated from the bone marrow, although similar populations have been isolated from adipose and other tissues. At one time, neural tissues were not regarded as regenerative populations of cells. Therefore, the identification of cell populations capable of neuronal differentiation has generated immense interest. Adipose tissue may represent an alternative source of cells that are capable of neuronal differentiation, potentially enhancing its use in the treatment of neurological disease. The aim of this review is to cover the current state of knowledge of the differentiation potential of human adipose-derived stem (ADAS) cells, specifically their ability to give rise to neuronal cells in vitro. This review presents and discusses different protocols used for inducing human ADAS cells to differentiate in vitro, and the neuronal markers utilized in each system.  相似文献   

15.
Heterogeneity of stromal precursor cells isolated from rat bone marrow   总被引:5,自引:0,他引:5  
Bone marrow stroma contains mesenchymal stem cells (MSC) which are precursor for at least mesenchyma-derived cells. Recent investigations revealed a lot of questions concerning MSC biology that should be further refined. The aim of this study was the comparative analysis of rat bone marrow stroma cells cultures. Mesenchymal precursor cells isolated from rat bone marrow were passed up to 50 times. Comparative morphological and immunophenotypical analysis of these cultures was carried out as well as their ability to osteogenic differentiation was studied. The isolated cultures contained morphologically different types of cells and thus showed a high heterogenity level. Morphology of these cell types was described. The heterogeneity level was reported to decrease over time. It was found out that subcultures isolated from different rats shared the same immunophenotype characteristics (CD90+, CD44+, CD54+, CD 106+, CD45-, CD11b-), but differed in their morphology as well as in ability to osteogenic differentiation. Thus MSC identification requires more specific marker and functional tests to be used.  相似文献   

16.
Adult mesenchymal stem cells possess a remarkably diverse array of immunosuppressive characteristics. The capacity to suppress the regular processes of allogeneic rejection, have allowed the use of tissue mismatched cells as therapeutic approaches in regenerative medicine and as agents of immune deviation. This review describes recent advances in understanding the mechanistic basis of mesenchymal stromal or stem cells (MSC) interaction with innate immunity. Particular emphasis is placed on the effect of Toll-like receptor signalling on MSC and a hypothesis that innate immune signals induce a 'licensing switch' in MSC is put forward. The mechanisms underlying MSC suppression of T cell responses and induction of regulatory populations are surveyed. Conflicting data regarding the influence of MSC on B cell function are outlined and discussed. Finally the limits to MSC mediated immune modulation are discussed with reference to the future clinical application of novel cell therapies.  相似文献   

17.
间充质干细胞(MSC)属于成体干细胞的一种,是一类具有自我更新和多向分化能力的多能干细胞。其来源丰富,免疫原性低,目前体内外实验均发现MSC可促进损伤肝脏修复,改善症状,提高存活率。通过调节肝脏局部和全身炎症反应和免疫紊乱发挥治疗作用。本文就MSC治疗肝脏疾病的研究现况进行综述。  相似文献   

18.
Schwann cells are critically important in recovery from injuries to the peripheral nervous system, and their absence from the central nervous system (CNS) may be a critical limiting factor in the CNS regeneration capacity. Various types of stem cells have been investigated for their potential to be induced to develop a Schwann cell phenotype, with mesenchymal stem cells (MSCs) being the most promising among them. The methods for inducing MSCs differentiation into Schwann cell-like cells are presented in detail in this review. The evidence related to successful differentiation of MSCs to Schwann cell-like cells is particularly discussed herein, which includes the changes in morphology, phenotype, function, and proteome. The possible explanations for the differentiation of MSCs to Schwann cell-like cells are also presented. Finally, we suggest future research aims which will need to be fulfilled to elucidate the biology of Schwann cell differentiation and MSC transdifferentiation, to enable clinical application of therapeutic differentiated MSC transplantation into nerve injury sites.  相似文献   

19.
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct‐limiting effects in numerous experimental and clinical studies. However, recent meta‐analyses of randomized clinical trials on MSC‐based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three‐dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non‐genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号