首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimeric interface of severe acute respiratory syndrome coronavirus main protease is a potential target for the anti-SARS drug development. We have generated C-terminal truncated mutants by serial truncations. The quaternary structure of the enzyme was analyzed using both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Global analysis of the combined results showed that truncation of C-terminus from 306 to 300 had no appreciable effect on the quaternary structure, and the enzyme remained catalytically active. However, further deletion of Gln-299 or Arg-298 drastically decreased the enzyme activity to 1-2% of wild type (WT), and the major form was a monomeric one. Detailed analysis of the point mutants of these two amino acid residues and their nearby hydrogen bond partner Ser-123 and Ser-139 revealed a strong correlation between the enzyme activity loss and dimer dissociation.  相似文献   

2.
N-terminal or C-terminal arms that extend from folded protein domains can play a critical role in quaternary structure and other intermolecular associations and/or in controlling biological activity. We have tested the role of an extended N-terminal arm in the structure and function of a periplasmic enzyme glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis. We have determined the crystal structure of the NAD(+) complex of a truncated form of the enzyme, GFORDelta, in which the first 22 residues of the N-terminal arm of the mature protein have been deleted. The structure, refined at 2.7 A resolution (R(cryst)=24.1%, R(free)=28.4%), shows that the truncated form of the enzyme forms a dimer and implies that the N-terminal arm is essential for tetramer formation by wild-type GFOR. Truncation of the N-terminal arm also greatly increases the solvent exposure of the cofactor; since GFOR activity is dependent on retention of the cofactor during the catalytic cycle we conclude that the absence of GFOR activity in this mutant results from dissociation of the cofactor. The N-terminal arm thus determines the quaternary structure and the retention of the cofactor for GFOR activity and during translocation into the periplasm. The structure of GFORDelta also shows how an additional mutation, Ser64Asp, converts the strict NADP(+) specificity of wild-type GFOR to a dual NADP(+)/NAD(+) specificity.  相似文献   

3.
The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays key roles in viral replication and is an attractive target for anti-SARS drug discovery. In this report, a fluorescence resonance energy transfer (FRET)-based method was developed to assess the proteolytic activity of SARS-CoV 3CL(pro). Two internally quenched fluorogenic peptides, 1NC and 2NC, corresponding to the N-terminal and the C-terminal autocleavage sites of SARS-CoV 3CL(pro), respectively, were used as substrates. SARS-CoV 3CL(pro) seemed to work more efficiently on 1NC than on 2NC in trans-cleavage assay. Mutational analysis demonstrated that the His41 residue, the N-terminal 7 amino acids, and the domain III of SARS-CoV 3CL(pro) were important for the enzymatic activity. Antibodies recognizing domain III could significantly inhibit the enzymatic activity of SARS-CoV 3CL(pro). The effects of class-specific protease inhibitors on the trans-cleavage activity revealed that this enzyme worked more like a serine protease rather than the papain protease.  相似文献   

4.
We report here the cloning and characterization of the entire cDNA of a papain-like cysteine protease from a tropical flowering plant. The 1098-bp ORF of the cDNA codify a protease precursor having a signal peptide of 19 amino acids, a cathepsin-L like N-terminal proregion of 114 amino acids, a mature enzyme part of 208 amino acids and a C-terminal proregion of 24 amino acids. The derived amino acid sequence of the mature part tallies with the thermostable cysteine protease Ervatamin-C--as was aimed at. The C-terminal proregion of the protease has altogether a different sequence pattern not observed in other members of the family and it contains a negatively charged helical zone. The three-dimensional model of the precursor, based on the homology modeling and X-ray structure, shows that the extended peptide stretch region of the N-terminal propeptide, covering the interdomain cleft, contains protruding side chains of positively charged residues. This study also indicates that the negatively charged zone of C-terminal propeptide may interact with the positively charged zone of the N-terminal propeptide in a cooperative manner in the maturation process of this enzyme.  相似文献   

5.
The pyruvate kinases from Genus Bacillus and a few other bacteria have an extra C-terminal sequence with a phosphoenolpyruvate binding motif composed of about 110 amino acids. To elucidate the possible structure and function of this sequence, the enzyme lacking the sequence was prepared and characterized. The N-terminal sequences of the peptides, which were found only in the lysylendopeptidase digest of the wild enzyme and not in that of the truncated enzyme, were determined. All the determined sequences were found in the extra C-terminal sequence deduced from the DNA sequence. The truncated enzyme showed decreased affinity for phosphoenolpyruvate and the allosteric effector ribose 5-phosphate, and had a reduced thermostability. Other properties, such as tetrameric structure, specific activity, and allosteric characteristics were unchanged. A comparison of the CD spectra of the truncated enzyme and the recombinant enzyme indicated that the structure of the C-terminal sequence should be rich in beta-sheet. These findings suggest that the sequence actually exists and that it may form a steady domain interacting with the A-domain and C-domain, which are the catalytic domain and allosteric effector binding domain, respectively.  相似文献   

6.
SARS-CoV 3C-like protease (3CL(pro)) is an attractive target for anti-severe acute respiratory syndrome (SARS) drug discovery, and its dimerization has been extensively proved to be indispensable for enzymatic activity. However, the reason why the dissociated monomer is inactive still remains unclear due to the absence of the monomer structure. In this study, we showed that mutation of the dimer-interface residue Gly-11 to alanine entirely abolished the activity of SARS-CoV 3CL(pro). Subsequently, we determined the crystal structure of this mutant and discovered a complete crystallographic dimer dissociation of SARS-CoV 3CL(pro). The mutation might shorten the alpha-helix A' of domain I and cause a mis-oriented N-terminal finger that could not correctly squeeze into the pocket of another monomer during dimerization, thus destabilizing the dimer structure. Several structural features essential for catalysis and substrate recognition are severely impaired in the G11A monomer. Moreover, domain III rotates dramatically against the chymotrypsin fold compared with the dimer, from which we proposed a putative dimerization model for SARS-CoV 3CL(pro). As the first reported monomer structure for SARS-CoV 3CL(pro), the crystal structure of G11A mutant might provide insight into the dimerization mechanism of the protease and supply direct structural evidence for the incompetence of the dissociated monomer.  相似文献   

7.
The main protease (Mpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. SARS-CoV Mpro is composed of a catalytic N-terminal domain and an α-helical C-terminal domain linked by a long loop. Even though the N-terminal domain of SARS-CoV Mpro adopts a similar chymotrypsin-like fold as that of piconavirus 3C protease, the extra C-terminal domain is required for SARS-CoV Mpro to be enzymatically active. Here, we reported the NMR assignments of the SARS-CoV Mpro N-terminal domain alone, which are essential for its solution structure determination.  相似文献   

8.
The severe acute respiratory syndrome coronavirus papain-like protease (SARS-CoV PLpro) carries out N-terminal processing of the viral replicase polyprotein, and also exhibits Lys48-linked polyubiquitin chain debranching and ISG15 precursor processing activities in vitro. Here, we used SDS-PAGE and fluorescence-based assays to demonstrate that ISG15 derivatives are the preferred substrates for the deubiquitinating activity of the PLpro. With k(cat)/K(M) of 602,000 M(-1)s(-1), PLpro hydrolyzes ISG15-AMC 30- and 60-fold more efficiently than Ub-AMC and Nedd8-AMC, respectively. Data obtained with truncated ISG15 and hybrid Ub/ISG15 substrates indicate that both the N- and C-terminal Ub-like domains of ISG15 contribute to this preference. The enzyme also displays a preference for debranching Lys48- over Lys63-linked polyubiquitin chains. Our results demonstrate that SARS-CoV PLpro can differentiate between ubiquitin-like modifiers sharing a common C-terminal sequence, and that the debranching activity of the PLpro is linkage type selective. The potential structural basis for the demonstrated specificity of SARS-CoV PLpro is discussed.  相似文献   

9.
Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed close correlation with the subunit dissociation. Further increase in guanidinium chloride induced a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme, on the other hand, followed a monophasic unfolding curve. Different mutants of the full-length protease (W31 and W207/W218), with tryptophanyl residue(s) mutated to phenylalanine at the C-terminal or N-terminal domain, respectively, were constructed. Unfolding curves of these mutants were monophasic but corresponded to the first and second phases of the protease, respectively. The unfolding intermediate of the protease thus represented a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties. The various enzyme forms were characterized in terms of hydrophobicity and size-and-shape distributions. We provide direct evidence for the functional role of C-terminal domain in stabilization of the catalytic N-terminal domain of SARS coronavirus main protease.  相似文献   

10.
Zhong N  Zhang S  Zou P  Chen J  Kang X  Li Z  Liang C  Jin C  Xia B 《Journal of virology》2008,82(9):4227-4234
The main protease (M(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. It was found that SARS-CoV M(pro) exists in solution as an equilibrium of both monomeric and dimeric forms, and the dimeric form is the enzymatically active form. However, the mechanism of SARS-CoV M(pro) dimerization, especially the roles of its N-terminal seven residues (N-finger) and its unique C-terminal domain in the dimerization, remain unclear. Here we report that the SARS-CoV M(pro) C-terminal domain alone (residues 187 to 306; M(pro)-C) is produced in Escherichia coli in both monomeric and dimeric forms, and no exchange could be observed between them at room temperature. The M(pro)-C dimer has a novel dimerization interface. Meanwhile, the N-finger deletion mutant of SARS-CoV M(pro) also exists as both a stable monomer and a stable dimer, and the dimer is formed through the same C-terminal-domain interaction as that in the M(pro)-C dimer. However, no C-terminal domain-mediated dimerization form can be detected for wild-type SARS-CoV M(pro). Our study results help to clarify previously published controversial claims about the role of the N-finger in SARS-CoV M(pro) dimerization. Apparently, without the N-finger, SARS-CoV M(pro) can no longer retain the active dimer structure; instead, it can form a new type of dimer which is inactive. Therefore, the N-finger of SARS-CoV M(pro) is not only critical for its dimerization but also essential for the enzyme to form the enzymatically active dimer.  相似文献   

11.
Arginase I is a homotrimeric protein with a binuclear manganese cluster. At the C-terminus of each monomer, the polypeptide chain forms an unusual S-shaped oligomerization motif where the majority of intermonomer contacts are located [Z.F. Kanyo, L.R. Scolnick, D.E. Ash, D.W. Christianson, Nature 383 (1996) 554-557]. In order to study the implication of this motif in the quaternary structure of human arginase I, we have constructed a truncated arginase lacking the 14 C-terminal amino acids, leaving Arg-308 as the last residue in the sequence. The resulting protein retains its trimeric structure, as determined by gel filtration (molecular mass 94 kDa). The same result was obtained in the presence of high ionic strength (KCl 0.5 M). Both data indicate that neither the S-shaped motif nor Arg-308 are fundamental in keeping the trimeric quaternary structure. Data obtained from intrinsic anisotropy and fluorescence intensity studies allow us to predict that the distance between the two unique tryptophans in the sequence is 2.9 nm in the native arginase and 4.1 nm for the truncated mutant. These distances allow us to assume a different conformational state in the truncated arginase without any change in its quaternary structure, suggesting that the carboxy-terminal motif is not the most prominent domain implicated in the quaternary structure of human arginase. Collisional quenching studies reinforce this possibility, since using I(-) as quenching molecule we were able to distinguish the two tryptophans in the truncated arginase. Moreover, kinetic studies show that the truncated mutant was fully active. In summary, the main conclusion about the structure of the human arginase I, derived from our study, is that the C-terminal S-shaped motif is not basic to the maintenance of the quaternary structure nor to the activity of the protein.  相似文献   

12.
The 95 kDa subunit a of eukaryotic V-ATPases consists of a C-terminal, ion-translocating part and an N-terminal cytosolic domain. The latter's N-terminal domain (~40 kDa) is described to bind in an acidification-dependent manner with cytohesin-2 (ARNO), giving the V-ATPase the putative function as pH-sensing receptor. Recently, the solution structure of the very N-terminal segment of the cytosolic N-terminal domain has been solved. Here we produced the N-terminal truncated form SCa??????? of the N-terminal domain (SCa?????) of the Saccharomyces cerevisiae V-ATPase and determined its low resolution solution structure, derived from SAXS data. SCa??????? shows an extended S-like conformation with a width of about 3.88 nm and a length of 11.4 nm. The structure has been superimposed into the 3D reconstruction of the related A?A? ATP synthase from Pyrococcus furiosus, revealing that the SCa??????? fits well into the density of the collar structure of the enzyme complex. To understand the importance of the C-terminus of the protein SCa?????, and to determine the localization of the N- and C-termini in SCa???????, the C-terminal truncated form SCa??????? was produced and analyzed by SAXS. Comparison of the SCa??????? and SCa??????? shapes showed that the additional loop region in SCa??????? consists of the C-terminal residues. Whereas SCa??????? is monomeric in solution, SCa??????? forms a dimer, indicating the importance of the very C-terminus in structure formation. Finally, the solution structure of SCa??????? and SCa??????? will be discussed in terms of the topological arrangement of subunit a and cytoheisn-2 in V-ATPases.  相似文献   

13.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel human coronavirus. Viral maturation requires a main protease (3CL(pro)) to cleave the virus-encoded polyproteins. We report here that the 3CL(pro) containing additional N- and/or C-terminal segments of the polyprotein sequences undergoes autoprocessing and yields the mature protease in vitro. The dimeric three-dimensional structure of the C145A mutant protease shows that the active site of one protomer binds with the C-terminal six amino acids of the protomer from another asymmetric unit, mimicking the product-bound form and suggesting a possible mechanism for maturation. The P1 pocket of the active site binds the Gln side chain specifically, and the P2 and P4 sites are clustered together to accommodate large hydrophobic side chains. The tagged C145A mutant protein served as a substrate for the wild-type protease, and the N terminus was first digested (55-fold faster) at the Gln(-1)-Ser1 site followed by the C-terminal cleavage at the Gln306-Gly307 site. Analytical ultracentrifuge of the quaternary structures of the tagged and mature proteases reveals the remarkably tighter dimer formation for the mature enzyme (K(d) = 0.35 nm) than for the mutant (C145A) containing 10 extra N-terminal (K(d) = 17.2 nM) or C-terminal amino acids (K(d) = 5.6 nM). The data indicate that immature 3CL(pro) can form dimer enabling it to undergo autoprocessing to yield the mature enzyme, which further serves as a seed for facilitated maturation. Taken together, this study provides insights into the maturation process of the SARS 3CL(pro) from the polyprotein and design of new structure-based inhibitors.  相似文献   

14.
Thermotoga maritima β-glucosidase consists of three structural regions with 721 amino acids: the N-terminal domain, middle non-homologous region and a C-terminal domain. To investigate the role of these domains in the co-refolding of two fragments into catalytically active form, five sites coding the amino acid residue at 244, 331 in the N-terminal domain, 403 in the non-homologous region, 476 and 521 in the C-terminal domain were selected to split the gene. All the 10 resultant individual fragments were obtained as insoluble inclusion bodies and found to be catalytically inactive. However, the catalytic activity was recovered when the two fragments derived from N-terminal and C-terminal peptides were co-refolded together. It is quite interesting to find that not only the complement polypeptides such as N476/477C but also the truncated combination (N476/522C, amino acid residues from 477 to 521 is truncated) and overlapped combination (N476/245C and N476/404C, amino acid residues from 245 to 476 and from 404 to 476 are overlapped) also gave catalytically active enzymes. Our results showed that folding motifs consisted of the complete N-terminal domain play an important role in the co-refolding of the polypeptides into the catalytically active form.  相似文献   

15.
Saxena A  Hur RS  Luo C  Doctor BP 《Biochemistry》2003,42(51):15292-15299
Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.  相似文献   

16.
构建汉滩病毒76—118N蛋白及其分别从N-端和C-端缺失的共6个突变体,在大肠杆菌BL-21中进行表达,并对其中一些蛋白进行了纯化。通过Western blot、酶联免疫吸附试验(ELISA)进行汉滩病毒N蛋白的抗原表位分析,N蛋白及6个缺失突变体都与组特异性抗体L13F3呈阳性反应,而缺失突变体与型特异性抗体AH30呈阴性反应。构建汉滩病毒76—118N蛋白及其6个缺失突变体的真核表达载体,并在COS-7细胞中进行表达。通过间接免疫荧光试验(IFA)进行汉滩病毒N蛋白的抗原表位分析,病人血清与真核表达的N蛋白及6个缺失突变体呈阳性反应。而仅有N蛋白及缺失N端1~30位氨基酸序列的NPN30与型特异性抗体AH30呈阳性反应。证实组特异性抗体L13F3结合的抗原表位位于N端1~30位氨基酸;而C端抗原表位对于型特异性抗体AH30与N蛋白的识别和结合具有重要意义,缺失N端100位氨基酸序列可能破坏羧基端构象型表位,也可以影响N蛋白与AH30的结合。  相似文献   

17.
Truncated forms of Escherichia coli ADPglucose pyrophosphorylase were constructed using recombinant DNA techniques. A truncated form of the enzyme having the first 11 amino acid residues from the N-terminus and 2 amino acid residues from the C-terminus deleted was found to be highly active in absence of activator. A 1.6-fold activation by 1.5 mM fructose 1,6 bis-phosphate was observed for the truncated enzyme as compared to the 30-fold activation seen for the intact enzyme. Inhibition of the truncated enzyme by AMP was less than that seen with the intact enzyme. Similar properties were displayed by an enzyme truncated only at the N-terminal. Conversely, the C-terminal truncated enzyme shortened by 2 amino acid residues at the C-terminus is as sensitive as the intact enzyme to activation and inhibition. These results suggest that the N-terminal region is required for allosteric regulation of the enzyme.  相似文献   

18.
Recombinant human interstitial collagenase, an N-terminal truncated form, delta 243-450 collagenase, recombinant human stromelysin-1, and an N-terminal truncated form, delta 248-460 stromelysin, have been stably expressed in myeloma cells and purified. The truncated enzymes were similar in properties to their wild-type counterparts with respect to activation requirements and the ability to degrade casein, gelatin, and a peptide substrate, but truncated collagenase failed to cleave native collagen. Removal of the C-terminal domain from collagenase also modified its interaction with tissue inhibitor of metalloproteinases-1. Hybrid enzymes consisting of N-terminal (1-242) collagenase.C-terminal (248-460) stromelysin and N-terminal (1-233) stromelysin.C-terminal (229-450) collagenase, representing an exchange of the complete catalytic and C-terminal domains of the two enzymes, were expressed in a transient system using Chinese hamster ovary cells and purified. Both proteins showed similar activity to their N-terminal parent and neither was able to degrade collagen. Analysis of the ability of the different forms of recombinant enzyme to bind to collagen by ELISA showed that both pro and active stromelysin and N-terminal collagenase.C-terminal stromelysin bound to collagen equally well. In contrast, only the active forms of collagenase and N-terminal stromelysin.C-terminal collagenase bound well to collagen, as compared with their pro forms.  相似文献   

19.
The acpI gene encoding an alkaline protease (AcpI) from a deep-sea bacterium, Alkalimonas collagenimarina AC40T, was shotgun-cloned and sequenced. It had a 1,617-bp open reading frame encoding a protein of 538 amino acids. Based on analysis of the deduced amino acid sequence, AcpI is a subtilisin-like serine protease belonging to subtilase family A. It consists of a prepropeptide, a catalytic domain, and a prepeptidase C-terminal domain like other serine proteases from the genera Pseudomonas, Shewanella, Alteromonas, and Xanthomonas. Heterologous expression of the acpI gene in Escherichia coli cells yielded a 28-kDa recombinant AcpI (rAcpI), suggesting that both the prepropeptide and prepeptidase C-terminal domains were cleaved off to give the mature form. Analysis of N-terminal and C-terminal amino acid sequences of purified rAcpI showed that the mature enzyme would be composed of 273 amino acids. The optimal pH and temperature for the caseinolytic activity of the purified rAcpI were 9.0–9.5 and 45°C in 100 mM glycine–NaOH buffer. Calcium ions slightly enhanced the enzyme activity and stability. The enzyme favorably hydrolyzed gelatin, collagen, and casein. AcpI from A. collagenimarina AC40T was also purified from culture broth, and its molecular mass was around 28 kDa, indicating that the cleavage manner of the enzyme is similar to that in E. coli cells.  相似文献   

20.
The relation between the quaternary structure and the substrate specificity of Thermus maltogenic amylase (ThMA) has been investigated. Sedimentation diffusion equilibrium ultracentrifugation and gel filtration analyses, in combination with the crystal structure determined recently, have demonstrated that ThMA existed in a monomer/dimer equilibrium. The truncation of ThMA by removing the N-terminal domain, which is composed of 124 amino acid residues, resulted in the complete monomerization of the enzyme (ThMADelta124) accompanied by a drastic decrease in the activity for beta-cyclodextrin (beta-CD) and a relatively smaller reduction of the activity for starch. Despite the overall low activity of ThMADelta124, the activity was higher toward starch than beta-CD, and the ratio of the specific activities toward these substrates was approximately 100 fold higher than that of wild-type ThMA. Furthermore, the addition of KCl to wild-type ThMA shifted the monomer/dimer equilibrium toward the monomer. In the presence of 1.0 M KCl, the relative activity of ThMA toward beta-CD decreased to 74%, while that for soluble starch increased to 194% compared to the activities in the absence of KCl. Thus, the ThMA monomer and dimer are both inferred to be enzymatically active but with a somewhat different substrate preference. Kinetic parameters of the wild-type and truncated enzymes also are in accordance with the changes in their specific activities. We thus provide evidence in support of a model, which shows that the relative multisubstrate specificity of ThMA is influenced by the monomer/dimer equilibrium of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号