首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two spontaneous mutants of Escherichia coli strain KMBL-146 selected for resistance to the aminoglycoside antibiotic neamine show severe restriction of amber suppressors in vivo. Purified ribosomes from the mutant strains exhibit low neamine-induced misreading in vitro and a decreased affinity for the related antibiotic streptomycin.Biochemical analysis shows that the mutants each have two modified 30S ribosomal proteins, S12 and S5. In agreement with these results, genetic analysis shows that two mutations are present, neither of which confers resistance to neamine by itself; the mutation located in gene rpxL (the structural gene for protein S12) confers streptomycin dependence but this dependence is suppressed in the presence of the second mutation, located in gene rpxE (the structural gene for protein S5).  相似文献   

2.
The dominant suppressor SUP46 of the yeast Saccharomyces cerevisiae was shown to act on a wide range of mutations (preceding paper by Ono et al., 1981). Masurekar et al. (1981) demonstrated that ribosomes from the SUP46 strain make an abnormally high rate of errors in a cell-free translation system. These findings indicated that SUP46 suppression was the result of abnormal ribosomes misreading mutant codons. We have used two-dimensional polyacrylamide gel electrophoresis to show that the S11 protein from the 40 S ribosomal subunit has an altered electrophoretic mobility. Thus the gene product of the SUP46 locus is either the S11 ribosomal protein or an enzyme that modifies the S11 protein. These results demonstrate that the altered S11 protein is responsible for the suppression by misreading.  相似文献   

3.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

4.
Summary Six streptomycin-dependent mutants of Bacillus subtilis, two of which were asporogenous, were isolated. All six mutants, SD1, SD2, SD6, SD7, SD9 and SD10, contained a single mutation causing streptomycin dependence and asporogeny, but four of these mutants (SD6, SD7, SD9, SD10) contained a second mutation which phenotypically suppressed the asporogenous character of the streptomycin dependence mutation. All six mutants grew more slowly than the wild type strain BR151, but those defective in sporulation grew the slowest. The streptomycin dependence mutations of SD9 and SD10B (a sporeplus transformant from SD10 carrying both the dependence mutation and the phenotypic suppressor) lie near or possibly within the strA locus. Ribosomes from SD9, SD10A (a spore-minus transformant from SD10 carrying only the dependence mutation), and SD10B were stimulated in vitro by concentrations of streptomycin that inhibit the activity of wild type strain BR151 ribosomes. The level of misreading as measured by poly(U)-directed isoleucine incorporation was greatly enhanced by streptomycin in wild type strain BR151 ribosomes, but misreading of mutant SD9, SD10A, and SD10B ribosomes, irrespective of the sporulation phenotype, was little affected by streptomycin. There were no apparent differences in the patterns obtained by two-dimensional polyacrylamide gel electrophoresis of the 70S ribosomal proteins of the mutants SD9, SD10A, SD10B, and wild type strain BS151.  相似文献   

5.
Summary The effect on translational fidelity of a particular mutation in the gene coding for protein S5 (rpxE) has been investigated. This mutation has the opposite effect of a restrictive strA mutation; in vivo, it relieves the restriction imposed by strA on the suppression of T4 nonsense mutants and results in hypersensitivity to streptomycin; in vitro, the presence of the altered S5 protein in 30S ribosomes results in increased intrinsic misreading. It is concluded that this mutation, ramC319, acts as a ribosomal ambiguity mutation similar to certain mutations of protein S4 (ramA).  相似文献   

6.
A RelC deletion mutant, KO-100, of Streptomyces coelicolor A3(2) has been isolated from a collection of spontaneous thiostrepton-resistant mutants. KO-100 grows as vigorously as the parent strain and possesses a 6-bp deletion within the rplK, previously termed relC. When the wild-type rplK gene was propagated on a low-copy-number vector in mutant KO-100, the ability to produce ppGpp, actinorhodin and undecylprodigiosin, which had been lost in the RelC mutant, was completely restored. Allele replacement by gene homogenotization demonstrated that the RelC mutation is responsible for the resistance to thiostrepton and the inactivation of ppGpp, actinorhodin and undecylprodigiosin production. Western blotting showed that ribosomes from the RelC mutant KO-100 contain only one-eighth the amount of L11 protein found in ribosomes of the parent strain. The impairment of antibiotic production in KO-100 could be rescued by the introduction of mutations that confer resistance to streptomycin (str), which result in alteration of Lys-88 in ribosomal protein S12 to Glu or Arg. No accompanying restoration of ppGpp synthesis was detected in these RelC str double mutants. Received: 12 May 1997 / Accepted: 22 July 1997  相似文献   

7.
Summary A strain of E. coli K12 has been isolated which gives rise to mutations in a large number of ribosomal proteins. Mutant VT, which was derived from A19, shows a novel type of streptomycin dependence and has an altered ribosomal protein S8. Streptomycin-independent isolates from mutant VT contain a great variety of changed proteins on two-dimensional polyacrylamide gels. 120 revertants screened in this way have changes in thirteen 30S proteins and fifteen 50S proteins. Several mutants were found in which additional proteins are present on the ribosome. Further, there is one instance of a ribosomal protein (L1) being absent, and one of apparent doubling of a ribosomal protein (L7/12). The unique properties of mutant VT probably are the result of the altered S8.  相似文献   

8.
Summary 26 cold-resistant revertants of a cold-sensitiveEscherichia coli mutant with an altered ribosomal protein S8 were analyzed for their ribosomal protein pattern by two-dimensional polyacrylamide gel electrophoresis. It was found that 16 of them had acquired the apparent wild-type form of protein S8, one exhibits a more strongly altered S8 than the original mutant and two revertants regained the wild-type form of S8 and, in addition, possess alterations in protein L30. The ribosomes of the residual revertants showed no detectable difference from those of the parental S8 mutant.The mutation leading to the more strongly altered S8 was genetically not separable from the primary S8 mutation; this indicates that both mutations are very close to each other or at the same site. The structural gene for ribosomal protein L30 was mapped relative to two other ribosomal protein genes (for proteins S5 and S8) by the aid of one of the L30 mutants: The relative order obtained is:aroE....rpmD(L30)....rpsE(S5)....rpsH(S8)....THe L30 mutation impairs growth and ribosomal assembly at 20°C and is therefore the first example of a mutant with a defined 50S alteration that has (partial) cold-sensitive ribosome assembly. A double mutant was constructed which possesses both the S8 and the L30 mutations. It was found that the L30 mutation had a slight antagonistic effect on the growth inhibition caused by the S8 mutation. Thus the L30 mutants might have possibly arisen from the original S8 mutants first as S8/L30 double mutants which was followed by the loss of the original S8 lesion.  相似文献   

9.
Summary Mutants resistant to (Str-R) or dependent on streptomycin (Str-D) were isolated from several streptomycin independent (Str-I) strains of Escherichia coli. From 90 of these mutants ribosomes were isolated and the ribosomal proteins analyzed by two-dimensional polyacrylamide gel electrophoresis. The results which are summarized in Tables 1-4 led to the following conclusions:a) The phenotype (Str-R or Str-D) of the mutants isolated from the Str-I strains strongly depends on the parental strain. b) No other ribosomal proteins than S4, S5 and S12 seem to be altered by mutations leading to dependence on, independence from or resistance to streptomycin. c) The S4 proteins of the analyzed mutants belong to three groups. The ratio between the groups depends more on the origin of the mutants than on their phenotype. d) Eight new types of altered S4 proteins were detected. It is very likely that many, if not all, of the altered S4 proteins originated by frame shift mutations. e) Some of the mutants differ from the wild type by alterations in three ribosomal proteins (S4, S5 and S12). The alteration in one protein, S4, apparently compensates for that in another protein, S5, in such a way that the original phenotype is expressed. These mutants are therefore an excellent tool for studies at the molecular level on the interaction of ribosomal components within the particle.  相似文献   

10.
Summary The 80S ribosome of Schizosaccharomyces pombe contains 93 proteins as determined by twodimensional electrophoresis on polyacrylamide gels. Of these, 76 are basic and 17 are acidic at pH 8.7. 38 proteins could be assigned unambiguosly to the large sub-unit and 19 to the small.67 proteins were extracted from the two-dimensional gels and their molecular weights determined by electrophoresis on calibrated SDS-gels. Values varied from 11,000 to 52,000 daltons, the number average being 25,000 daltons. Hence the total protein content of the 80S ribosome must be at least 1.67x106 daltons.Three drug resistant strains are known, cyh1, anil and tri5 (resistant to cycloheximide, anisomycin and trichodermin respectively), in which resistace is conferred by an altered ribosome, in each case by an altered 60S sub-unit. When 80S ribosomal protein patterns from these strains were compared with that of wild type, in only one case was a clear difference seen. This involved a large sub-unit, basic protein (designated number 66 on our classification) which, in the cyh1 strain, had a reduced mobility in the second dimension when compared to the wild type. The mutant form of protein 66 had a molecular weight of 25,000 daltons compared to the 22,000 of the wild type protein. Production of a larger protein by the mutant strain could either be due to a readthrough event or to an alteration in the specificity of a modifying or processing enzyme.  相似文献   

11.
A spontaneous mutant of Escherichia coli K-12 was isolated that shows an increased misreading ability of all three nonsense codons together with an inability to grow at 42° C. It is demonstrated that the mutation is a deletion of the gene rpsT, coding for ribosomal protein S20. The loss of this protein not only influences the decoding properties of the ribosome; the modification pattern of 16S ribosomal RNA is also changed. This leads to a deficiency in the ability of the mutant to associate its 30S subunits with 50S subunits to form 70S ribosomes. It is suggested that two modified bases, m5C and m62A, are directly or indirectly essential for association of subunits to functional ribosomes in the rpsT mutant strain. Two other modifications were also studied; m2G which is not affected at all and m3U which is undermodified in both active and inactive subunits and, therefore, not involved in subunit association.  相似文献   

12.
Alterations in the ribosomes of sucrose-dependent spectinomycin-resistant (Sucd-Spcr) mutants of Escherichia coli were studied. Subunit exchange experiments showed that 30S subunits were responsible for the resistance of ribosomes to spectinomycin in all Sucd-Spcr mutants tested. Proteins of 30S ribosomes were analyzed by carboxymethyl cellulose column chromatography based on their elution positions. Mutants YM22 and YM93 had an altered 30S ribosomal protein component, S5, and mutant YM50 had an altered protein, S4. Although a shift of elution position was not detected for all the 30S ribosomal proteins from mutant YM101, the amount of protein S3 was appreciably lowered in the isolated 30S subunits. A partial reconstitution experiment with protein S3 prepared from both the wild-type strain and YM101 revealed that the mutant had altered protein S3 which is responsible for the spectinomycin resistance. These alterations in 30S subunits are discussed in relation to the interaction between ribosomes and the cytoplasmic membrane.  相似文献   

13.
Summary Mutants were analyzed biochemically and genetically in which restriction of translational misreading by ribosomes containing an altered L6 protein is relieved. Amongst 100 such strains eight possessed an altered S4 and two a mutant S5 protein. The protein-chemical type of L6 mutation seems to influence the kind of S4 mutant form selected. Also, only a few types of S4 ram mutations are obtained and they are different from those usually found amongst suppressors of streptomycin-dependent (SmD) strains. The S4 mutations selected are able to reduce the level of streptomycin-resistance of strA1 or strA40 strains and they confer extreme hypersensitivity to aminoglycosides when present alone. On the other hand, S4 mutations from SmD suppressor strains only weakly reverse L6 restriction. The results imply that control of translational fidelity is an intersubunit function and that protein L6 (an interface protein) cooperates with 30S proteins by directly or indirectly determining parameters involved in aminoacyl-tRNA recognition.  相似文献   

14.
Summary Strains carrying both the ramA1 and the neaA301 mutations do not exhibit the restriction of informational suppressors normally associated with resistance to neamine. Furthermore, ribosomes from such strains exhibit increased misreading in vitro with respect to particles from the neaA strain. These properties suggest that translational fidelity may be cooperatively controlled by ribosomal proteins S4 and S17, coded by ramA (rpsD) and neaA (rpsQ) genes respectively.  相似文献   

15.
16.
Summary Ribosomes and ribosomal proteins from wild-type and a yellow mutant of Chlamydomonas reinhardii were analysed and compared by two-dimensional gel electrophoresis.Mixothrophycally grown yellow-27 mutant differs from wild-type cells in lowered chlorophyll content and grana fromation of the chloroplast.Analytical ultracentrifuge analyses of cell extracts show a reduced amount of free 70S ribosomes and increased level of 50S subunits in the mutant cells. Similar results were obtained by electronmicroscopical method.Two-dimensional gel electrophoresis shows alterations in protein composition of 70S ribosomes of the mutant. Two proteins of 70S ribosomes have been altered. One of them with high molecular weight is practically absent while there is an additional, intensively stained spot in the mutant.Since the mutation is inherited in a non-Mendelian manner it is possible that the protein alterations in 70S ribosome are localized in the chloroplast DNA.  相似文献   

17.
Summary The ribosomal proteins of temperature-sensitive mutants of Escherichia coli isolated independently after mutagenesis with nitrosoguanidine were analyzed by two-dimensional gel electrophoresis. Out of 400 mutants analyzed, 60 mutants (15%) showed alterations in a total of 22 different ribosomal proteins. The proteins altered in these mutants are S2, S4, S6, S7, S8, S10, S15, S16, S18, L1, L3, L6, L10, L11, L14, L15, L17, L18, L19, L22, L23 and L24. A large number of them (25 mutants) have mutations in protein S4 of the small subunit, while four mutants showed alterations in protein L6 of the large subunit. The importance of these mutants for structural and functional analyses of ribosomes is discussed.  相似文献   

18.
Summary Antibodies raised against D. melanogaster ribosomal proteins were used to examine possible structural relationships between eukaryotic and prokaryotic ribosomal proteins. The antisera were raised against either groups of ribosomal proteins or purified individual ribosomal proteins from D. melanogaster. The specificity of each antiserum was confirmed and the identity of the homologous E. coli ribosomal protein was determined by immunochemical methods. Immuno-overlay assays indicated that the antiserum against the D. melanogaster small subunit protein S14 (anti-S14) was highly specific for protein S14. In addition, anti-S14 showed a cross-reaction with total E. coli ribosomal proteins in Ouchterlony double immunodiffusion assays and with only E. coli protein S6 in immuno-overlay assays. From these and other experiments with adsorption of anti-S14 with individual purified proteins, the E. coli protein homologous to the D. melanogaster protein S14 was established as protein S6.  相似文献   

19.
Summary An examination of the effect of the aminoglycoside antibiotics paromomycin and neomycin on mitochondrial ribosome function in yeast has been made. Both antibiotics are potent inhibitors of protein synthesis in isolated mitochondria. With isolated mitochondrial ribosomes programmed with polyuridylic acid (poly U), the drugs are shown to inhibit polyphenylalanine synthesis at moderately high concentrations (above 100 g/ml). At lower concentrations (about 10 g/ml), paromomycin and neomycin cause a 2–3 fold stimulation in the extent of misreading of the UUU codons in poly U, over and above the significant level of misreading catalyzed by the ribosomes in the absence of drugs.Comparative studies have been made between a paromomycin sensitive strain D585-11C and a mutant strain 4810P carrying the parl-r mutation in mtDNA, which leads tohigh resistance to both paromomycin and neomycin in vivo. A high level of resistance to these antibiotics is observed in strain 4810P at the level of mitochondrial protein synthesis in vitro. Whilst the degree of resistance of isolated mitochondrial ribosomes from strain 4810P judged by the inhibition of polyphenylalanine synthesis by paromomycin and neomycin is not extensive, studies on misreading of the poly U message promoted by these drugs demonstrate convincingly the altered properties of mitochondrial ribosomes from the mutant strain 4810P. These ribosomes show resistance to the stimulation of misreading of the codon UUU brought about by paromomycin and neomycin in wild-type mitochondrial ribosomes. Although strain 4810P was originally isolated as being resistant to paromomycin, in all the in vitro amino acid incorporation systems tested here, the 4810P mitochondrial ribosomes show a higher degree of resistance to neomycin than to paromomycin.It is concluded that the parl-r mutation in strain 4810P affects a component of the mitochondrial ribosome, possibly by altering the 15S rRNA or a protein of the small ribosomal subunit. The further elucidation of the functions in the ribosomes that are modified by the parl-r mutation was hampered by the inability of current preparations of yeast mitochondrial ribosomes to translate efficiently natural messenger RNAs from the several sources tested.  相似文献   

20.
The purified 30 S ribosomal proteins from Escherichia coli strain Q13 were chemically modified by reaction with ethyleneimine, specifically converting cysteine residues to S-2-aminoethylcysteine residues. Proteins S1, S2, S4, S8, S11, S12, S13, S14, S17, S18 and S21 were found to contain aminoethylcysteine residues after modification, whereas proteins S3, S5, S6, S7, S9, S10, S15, S16, S19 and S20 did not. Aminoethylated proteins S4, S13, S17 and S18 were active in the reconstitution of 30 S ribosomes and did not have altered functional activities in poly(U)-dependent polyphenylalanine synthesis, R17-dependent protein synthesis, fMet-tRNA binding and Phe-tRNA binding. Aminoethylated proteins S2, S11, S12, S14 and S21 were not active in the reconstitution of complete 30 S ribosomes, either because the aminoethylated protein did not bind stably to the ribosome (S2, S11, S12 and S21) or because the aminoethylated protein did not stabilize the binding of other ribosomal proteins (S14). The functional activities of 30 S ribosomes reconstituted from a mixture of proteins containing one sensitive aminoethylated protein (S2, S11, S12, S14 or S21) were similar to ribosomes reconstituted from mixtures lacking that protein. These results imply that the sulfhydryl groups of the proteins S4, S13, S17 and S18 are not necessary for the structural or functional activities of these proteins, and that aminoethylation of the sulfhydryl groups of S2, S11, S12, S14 and S21 forms either a kinetic or thermodynamic barrier to the assembly of active 30 S ribosomes in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号