首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Long and short repetitive sequences of sea urchin DNA were prepared by reassociation of 2000 nucleotide long fragments to Cot 4 and digestion with the single strand specific nuclease S1. The S1 resistant duplexes were separated into long repetitive and short repetitive fractions on Agarose A50. The extent of shared sequences was studied by reassociating a labeled preparation of short repetitive DNA with an excess of unlabeled long repetitive DNA. Less than 10% of the long repetitive DNA preparation was able to reassociate with the short repetitive DNA. Thus the long and short repetitive elements appear to be principally independent sequence classes in sea urchin DNA. Precisely reassociating repetitive DNA was prepared by four successive steps of reassociation and thermal chromatography on hydroxyapatite. This fraction (3% of the genome) was reassociated by itself or with a great excess of total sea urchin DNA. The thermal stability of the products was identical in both cases (Tm=81 degrees C), indicating that precisely repeated sequences do not have many imprecise copies in sea urchin DNA.  相似文献   

2.
Hyperchromicity, S1 nuclease digestion, and reassociation studies of Syrian hamster repetitive DNA have led to novel conclusions about repetitive sequence organization. Re-evaluation of the hyperchromicity techniques commonly used to determine the average length of genomic repetitive DNA regions indicates that both the extent of reassociation, and the possibility of non-random elution of hyperpolymers from hydroxyapatite can radically affect the observed hyperchromicity. An alternative interpretation of hyperchromicity experiments, presented here, suggests that the average length of repetitive regions in Syrian hamster DNA must be greater than 4000 nucleotides.S1 nuclease digestion of reassociated 3200 nucleotide Syrian hamster repetitive DNA, on the other hand, yields both long (>2000 nucleotides) and short (300 nucleotides) resistant DNA duplexes. Calculations indicate that the observed mass of short nuclease-resistant duplexes (>60%) is too large to have arisen only from independent short repetitive DNA sequences alternating with non-repetitive regions. Reassociation experiments using long and short S1 nuclease-resistant duplexes as driver DNA indicate that all repetitive sequences are present in both fractions at approximately the same concentration. Isolated long S1 nuclease-resistant duplexes, after denaturation, renaturation, and a second S1 nuclease digestion, again produce both long and short DNA duplexes. Reassociation experiments indicate that all repetitive DNA sequences are still present in the “recycled” long S1 nuclease-resistant duplexes. These experiments imply that many of the short S1 nuclease-resistant repetitive DNA duplex regions present in reassociated Syrian hamster DNA were initially present in the genome as part of longer repetitive sequence blocks. This conclusion suggests that the majority of “short” repetitive regions in Syrian hamster DNA are organized into scrambled tandem clusters rather than being individually interspersed with non-repetitive regions.  相似文献   

3.
Analysis of rat repetitive DNA sequences.   总被引:8,自引:0,他引:8  
Parameters of repetitive sequence organization have been measured in the rat genome. Experiments using melting, hydroxylapatite binding, and single strand specific nuclease digestion have been used to measure the number, length, and arrangement of repeated DNA sequences. Renaturation and melting or S1 nuclease digestion of 1.0 kbp DNA fragment show about 20% of rat DNA sequences are 3000-fold repeated. Renatured duplexes from 4.0 kbp DNA fragments display two repetitive size fractions after nuclease digestion. About 60% of the repeated sequences are 0.2-0.4 kbp long while the remainder are longer than 1.5 kbp. The arrangement of the repeated sequences has been measured by hydroxylapatite fractionation of DNA fragments of varying lengths bearing a repeated sequence. Repeated DNA sequences are interspersed among 2.5 kbp long nonrepeated sequences throughout more than 70% of the rat genome. There are approximately 350 different 3000-fold short repeated sequences in the rat interspersed among 600,000 nonrepeated DNA sequences.  相似文献   

4.
A sensitive search has been made in Drosophila melanogaster DNA for short repetitive sequences interspersed with single copy sequences. Five kinds of measurements all yield the conclusion that there are few short repetitive sequences in this genome: 1) Comparison of the kinetics of reassociation of short (360 nucleotide) and long (1,830 nucleotide) fragments of DNA; 2) reassociation kinetics of long fragments (2,200 nucleotide) with an excess of short (390 short nucleotide) fragments; 3) measurement of the size of S1 nuclease resistant reassociated repeated sequences; 4) measurement of the hyperchromicity of reassociated repetitive fragments as a function of length; 5) direct assay by kinetics of reassociation of the amount of single copy sequence present on 1,200 nucleotide long fragments which also contain repetitive sequences.  相似文献   

5.
By means of renaturation kinetics of DNA of the three avian species Cairina domestica, Gallus domesticus and Columba livia domestica the following major DNA repetition classes were observed: a very fast reannealing fraction comprising about 15% of the DNA, a fast or intermediate reannealing fraction that makes up 10%, and a slow reannealing fraction of about 70%, which apparently renatures with single copy properties. — Comparing the reassociation behaviour of short (0.3 kb) and long (>2 kb) DNA fragments of duck and chicken it becomes apparent that only 12% (duck) and 28% (chicken) of the single copy DNA are interspersed with repetitive elements on 2 to 3 kb long fragments. The lengths of the repetitive sequences were estimated by optical hyperchromicity measurements, by agarose A-50 chromatography of S1 nuclease resistant duplexes and by electron microscopic measurements of the S1 nuclease resistant duplexes. It was found that in the case of the chicken DNA the single copy sequences alternating with middle repetitive ones are at least 2.3 kb long; the interspersed moderate repeats have a length average of at least 1.5 kb. The sequence length of the moderate repeats in duck DNA is smaller. The results show that the duck and the chicken genomes do not follow the short period interspersion pattern of genome organisation, characteristic of the eucaryotic organisms studied so far.  相似文献   

6.
Summary New methods have been applied to the determination of single copy DNA sequence differences between the sea urchin speciesStrongylocentrotus purpuratus, S. franciscanus, S. drobachiensis, andLytechinus pictus. The thermal stability of interspecies DNA duplexes was measured in a solvent (2.4 M tetraethylammonium chloride) that suppresses the effect of base composition on melting temperature. The lengths of duplexes were measured after digestion with S1 nuclease and correction made for the effect of length on thermal stability. The degree of base substitution that has occurred in the single copy DNA during sea urchin evolution is significantly larger than indicated by earlier measurements. We estimate that 19% of the nucleotides of the single copy DNA are different in the genomes of the two sea urchin congeners,S. purpuratus, andS. franciscanus, which apparently diverged only 15 to 20 million years ago.  相似文献   

7.
Measurements are reported which lead to the conclusion that repetitive and nonrepetitive sequences are intimately interspersed in the majority of the DNA of the sea urchin, Strongylocentrotus purpuratus. Labeled DNA was sheared to various lengths, reassociated with a great excess of 450 nucleotide-long fragments to cot 20, and the binding of the labeled DNA to hydroxyapatite was measured. Repetitive sequences measured in this way are present on about 42% of the 450 nucleotide-long fragments. As the DNA fragment length is increased, larger and larger fractions of the fragments contain repetitive sequences. Analysis of the measurements leads to the following estimate of the quantitative features of the pattern of interspersion of repetitive and nonrepetitive sequences. About 50% of the genome consists of a short-period pattern with 300–400 nucleotide average length repetitive segments interspersed with about 1000 nucleotide average length nonrepetitive segments. Another 20% or more consists of a longer period interspersed pattern. About 6% of the genome is made up of relatively long regions of repetitive sequences. The remaining 22% of the genome may be uninterrupted single copy DNA, or may have more widely spaced repeats interspersed. The similarity of these results to previous measurements with the DNA of an amphibian suggests that this interspersion pattern is of general occurrence and selective importance.  相似文献   

8.
Repeated sequences cloned from the DNA of the sea urchin S. purpuratus were used as probes to measure the lengths of individual families of repeats. Some probes reassociated much more rapidly with preparations of long repeats than with short repeats while others reassociated more rapidly with short repeats than with long repeats. In this way two of five cloned repeats were shown to represent families with a great majority of sequences in the long class. One represented a family with similar numbers of long and short class members. Two were members of predominantly short class families. — The cloned repeats representing long class families, formed more precise duplexes than those representing short class families. Thermal stability measurements using S. purpuratus or S. franciscanus driver DNA showed that precise repetitive sequences have as great an interspecies sequence difference as the less precise repeats. Thus the precision of many families may result from recent multiplication rather than from selective pressure on the DNA sequences. Measurements of evolutionary frequency change show a clear correlation between the frequency change and the size of families of repeats in S. purpuratus. Comparison with S. franciscanus indicates that many of the large size families in S. purpuratus are those that have grown in size since these two species diverged.  相似文献   

9.
Genome structure and divergence of nucleotide sequences in echinodermata   总被引:1,自引:0,他引:1  
The arrangement of repetitive and single-copy DNA sequences has been studied in DNA of some species of Echinodermata — sea urchin, starfishes and sea-cucumber. Comparison of the reassociation kinetics of short and long DNA fragments indicates that the pattern of DNA sequence organization of all these species is similar to the so called Xenopus pattern characteristic of the genomes of most animals and plants. However, substantional variations have been found in the amount of repetitive nucleotide sequences in DNA of different species and in the length of DNA regions containing adjacent single-copy and repetitive sequences. Measurements of the size of S1-nuclease resistant reassociated repetitive DNA sequences show a variability of ratios between long and short repetitive DNA sequences of different species. — The degree of divergence of short and long repetitive DNA sequences and single-copy DNA was studied by molecular hybridization of the sea urchin Strongylocentrotus intermedius 3H-DNA with the DNA of other species and by determination of the thermostability of the hybridized molecules so obtained. All three fractions of S. intermedius DNA contain sequences homologous to DNA of the other echinoderm species studied. The results obtained suggest that short repetitive DNA sequences are those which have been most highly conserved throughout the evolution of Echinodermata. A new hypothesis is proposed to explain the nature of the evolutionary changes in DNA sequence interspersion patterns.  相似文献   

10.
Summary A major portion of the genomes of three millet species, namely, barn yard millet, fox tail millet and little millet has been shown to consist of interspersed repeat and single copy DNA sequences. The interspersed repetitive DNA sequences are both short (0.15–1.0 kilo base pairs, 62–64% and long (>1.5 kilo base pairs, 36–38%) in barn yard millet and little millet while in fox tail millet, only long interspersed repeats (>1.5 kilo base pairs) are present. The length of the interspersed single copy DNA sequences varies in the range of 1.6–2.6 kilo base pairs in all the three species. The repetitive duplexes isolated after renaturation of 1.5 kilo base pairs and 20 kilo base pairs long DNA fragments exhibit a high thermal stability with Tms either equal to or greater than the corresponding native DNAs. The S1 nuclease resistant repetitive DNA duplexes also are thermally stable and reveal the presence of only 1–2% sequence divergence.The present data on the modes of sequence arrangement in millets substantiates the proposed trend in plants, namely, plants with 1C nuclear DNA content of less than 5 picograms have diverse patterns of sequence organization while those with 1C nuclear DNA content greater than 5 picograms have predominantly a short period interspersion pattern.Abbreviations kbp kilobase pairs NCL Communication No. 3606.  相似文献   

11.
Structural genes adjacent to interspersed repetitive DNA sequences   总被引:2,自引:0,他引:2  
The observation that repetitive and single copy sequences are interspersed in animal DNAs has suggested that repetitive sequences are adjacent to single copy structural gene sequences. To test this concept, single copy DNA sequences contiguous to interspersed repetitive sequences were prepared from sea urchin DNA by hydroxyapatite fractionation (repeat-contiguous DNA fraction). These single copy sequences included about one third of the total nonrepetitive sequence in the genome as determined by the amounts recovered during the hydroxyapatite fractionation and by reassociation kinetics. 3H-labeled mRNA from sea urchin gastrula was prepared by puromycin release from polysomes and used in DNA-driven hybridization reactions. The kinetics of mRNA hybridization reactions with excess whole DNA were carefully measured, and the rate of hybridization was found to be 3–5 times slower than the corresponding single copy DNA driver reassociation rate. The mRNA hybridized with excess repeat-contiguous DNA with similar kinetics relative to the driver DNA. At completion 80% of that mRNA hybridizable with whole DNA (approximately 65%) had reacted with the repeat-contiguous DNA fraction (50%). This result shows that 80–100% of the mRNA molecules present in sea urchin embryos are transcribed from single copy DNA sequences adjacent to interspersed repetitive sequences in the genome.  相似文献   

12.
DNA sequence organization in the mollusc Aplysia californica.   总被引:7,自引:0,他引:7  
The sequence organization of the DNA of the mollusc Aplysia californica has been examined by a combination of techniques. Close-spaced interspersion of repetitive and single copy sequences occurs throughout the majority of the genome. Detailed examination of the DNA of this protostome reveals great similarities to the pattern observed in the two deuterostome organisms previously examined in detail in this laboratory, Xenopus laevis and Strongylocentrotus purpuratus. Labeled and unlabeled Aplysia DNA were prepared from developing embryos and sheared to a fragment length of 400 nucleotides. The kinetics of reassociation were studied by means of hydroxyapatite chromatography, single-strand-specific S1 nuclease, and optical methods of assay. Aplysia DNA of this fragment length contains at least five resolvable kinetic fractions. One classification of these fractions, listed with their reassociation rate constants (l M-1 sec-1) is: single copy (0.00057), slow (0.047), fast (2.58), very fast (4000), and foldback (greater than 10(5)). Sequence arrangement was deduced from: the kinetics of reassociation of DNA fragments of length 400 or 2000 nucleotides; the hyperchromicity of reassociated fragments containing duplex regions; the size of duplex regions resistant to S1 nuclease; and the reassociation of labeled fragments of various lengths with short driver fragments. More than 80% of the single copy DNA sequences are interspersed with repetitive sequences. The maximum spacing of the repeats is about 2000 nucleotides, and the average less than 1000. The very fast fraction does not show interspersion with single copy sequences or with other kinetic fractions. The foldback fraction sequences are fairly widely interspersed. The slow fraction sequences are interspersed with the fast fraction, and possibly also with the single copy DNA. The fast fraction is the dominant interspersed repetitive fraction. Its sequences are adjacent to the great majority of the single copy sequences and have an average length of about 300 nucleotides.  相似文献   

13.
The nuclear genome of pearl millet has been characterized with respect to its size, buoyant density in CsCl equilibrium density gradients, melting temperature, reassociation kinetics and sequence organization. The genome size is 0.22 pg. The mol percent G + C of the DNA is calculated from the buoyant density and the melting temperature to be 44.9 and 49.7%, respectively. The reassociation kinetics of fragments of DNA 300 nucleotides long reveals three components: a rapidly renaturing fraction composed of highly repeated and/or foldback DNA, middle repetitive DNA and single copy DNA. The single copy DNA consists of 17% of the genome. 80% of the repetitive sequences are at least 5000 nucleotide pairs in length. Thermal denaturation profiles of the repetitive DNA sequences show high Tm values implying a high degree of sequence homogeneity. About half of the single copy DNA is short (750--1400 nucleotide paris) and interspersed with long repetitive DNA sequences. The remainder of the single copy sequences vary in size from 1400 to 8600 nucleotide pairs.  相似文献   

14.
The frequency classes and organization of the main component (mc) DNA of a crustacean, the land crab, Gecarcinus lateralis, have been characterized. The reassociation kinetics of 380 nucleotide long mcDNA fragments show that approximately 50% contain sequences repeated more than 800 times. Present in few, if any, copies are sequences repeated from 2 to 800 times. The remainder of the DNA reassociates as single copy sequences with a rate constant consistent with the organism's genome size. The reassociation kinetics of highly sheared DNA fragments of every true crab studied (Vaughn, 1975; Christie et al., 1976) are similar to each other and different from those of other invertebrate DNAs (Goldberg et al., 1975). Each of these genomes has a paucity of sequences repeated from 10 to 800 times and an abundance of highly repeated sequences. To determine if sequences repeated more than 800 times are interspersed with single copy sequences, we examined the arrangement of repetitive and non-repetitive sequences in mcDNA. The reassociation and melting properties of partially duplex mcDNA fragments of increasing lengths show that at least 75% of the DNA is organized in an interspersed pattern. In this pattern, single copy sequences with an average length of 800–900 nucleotides are interspersed with repetitive sequences. S1 nuclease digestion of reassociated 3100 nucleotide fragments indicates that 44% of the mcDNA is repetitive and that one-third of the repetitive sequences (average length=285 nucleotides) are interspersed with single copy sequences. We conclude that repetitive sequencies are interspersed with most of the single copy sequences in an interspersion pattern similar to that of Xenopus rahter than to that of another arthropod, Drosophila.Operated by Union Carbide Corporation for the Energy Research and Development Administration  相似文献   

15.
Evolutionary change in the repetition frequency of sea urchin DNA sequences   总被引:1,自引:0,他引:1  
The frequency of occurrence of particular repetitive sequence families has been estimated in the DNA of the three sea urchin species Strongylocentrotus purpuratus, Strongylocentrotus franciscanus and Lytechinus pictus using individual cloned S. purpuratus repetitive sequence elements. Cloned repetitive sequence elements as described by Scheller et al. (1977a) were prepared by reassociation of S. purpuratus DNA fragments to repetitive Cot, digestion with single-strand-specific nuclease S1 and ligation of synthetic restriction sites to their ends. The sequences were cloned by insertion at the Eco RI site of plasmid RSF2124, labeled, strand-separated and reassociated with 800–900 nucleotide long unlabeled DNA. Both kinetic (genomic DNA excess) and saturation (cloned DNA excess) estimates of frequencies were made. For nine cloned fragments, the ratio of the repetition frequency in S. purpuratus DNA to that in S. franciscanus DNA ranges from about 20 to about 1. In the four cases examined, only a few copies were detected in the DNA of L. pictus. Estimates have also been made of frequency changes in many repetitive families by measuring the reassociation of labeled repetitive DNA fractions of each species with total DNA from other species. In each reciprocal comparison, the labeled repetitive sequences reassociate more slowly with DNA of other species than with DNA of the species from which they were prepared. Thus it appears that the dominant repetitive sequence families in the DNA of each species are present at lower frequencies in the DNA of closely related species. Measurements of thermal stability have been made of S. purpuratus cloned repetitive sequences reassociated with S. franciscanus DNA or S. purpuratus DNA. Most families have changed both in frequency and sequence, although some have changed little in sequence but show great changes in frequency.  相似文献   

16.
Native DNA of the Guinea pig, Cavia porcellus, purified from liver or tissue culture cells, was heat denatured and reassociated to a Cot value of 0.01 (equivalent Cot value of 7.2 x 10(-2)). The reassociated DNA was isolated by digestion with the single-strand DNA specific enzyme S1 nuclease. Spectrophotometric and radioactivity assays demonstrated that 24% of the total DNA was resistant to S1 nuclease treatment. Zero-time reassociation indicated that approximately 3% of the DNA was inverted repeat sequences. Thus, highly repeated sequences comprised 21% of the total genome. CsCl buoyant density ultracentrifugation indicated that this fraction was composed of both main band and satellite sequences. Although actinomycin D - CsCl density gradients failed to give significant separation of the repetitive sequences, distamycin A - CsCl gradients were able to fractionate the DNA into several overlapping bands. The heterogeneity of the repetitive DNA was further demonstrated by the first derivative plots calculated from their thermal denaturation profiles. This analysis revealed six major thermalytes which indicate that there may be at least six discrete components in the repetitive DNA.  相似文献   

17.
We have examined the organization of the repeated and single copy DNA sequences in the genomes of two insects, the honeybee (Apis mellifera) and the housefly (Musca domestica). Analysis of the reassociation kinetics of honeybee DNA fragments 330 and 2,200 nucleotides long shows that approximately 90% of both size fragments is composed entirely of non-repeated sequences. Thus honeybee DNA contains few or no repeated sequences interspersed with nonrepeated sequences at a distance of less than a few thousand nucleotides. On the other hand, the reassociation kinetics of housefly DNA fragments 250 and 2,000 nucleotides long indicates that less than 15% of the longer fragments are composed entirely of single copy sequences. A large fraction of the housefly DNA therefore contains repeated sequences spaced less than a few thousand nucleotides apart. Reassociated repetitive DNA from the housefly was treated with S1 nuclease and sized on agarose A-50. The S1 resistant sequences have a bimodal distribution of lengths. Thirty-three percent is greater than 1,500 nucleotide pairs, and 67% has an average size about 300 nucleotide pairs. The genome of the housefly appears to have at least 70% of its DNA arranged as short repeats interspersed with single copy sequences in a pattern qualitatively similar to that of most eukaryotic genomes.  相似文献   

18.
Aggregate formation from short fragments of plant DNA   总被引:4,自引:2,他引:2       下载免费PDF全文
Large aggregates have been observed after partial reassociation of pea (Pisum sativum L.) DNA preparations sheared to mean single strand fragment lengths as short as 350 nucleotides. At high DNA concentrations and conditions of salt and temperature which require only moderate precision of base pairing, aggregates pelletable by brief centrifugation account for 30 to 40% of the total DNA from peas, while calf thymus DNA reassociated under similar conditions forms less than 10% pelletable structures. In contrast to networks formed during the reassociation of long DNA fragments containing interspersed repetitive sequences, these aggregates contain a high percentage of double-stranded DNA and are enriched in repetitive sequences.  相似文献   

19.
Repetitive sequence transcripts in the mature sea urchin oocyte   总被引:7,自引:0,他引:7  
  相似文献   

20.
Long and short repetitive sequences were purified from the DNA of Paracentrotus lividus under conditions designed to optimize the yield of complete, end to end sequences. Double-stranded long repeat DNA prepared in this manner ranged in length from approximately 3000 to 15 000 nucleotide pairs with average sizes of approximately 6000 base pairs. In the electron microscope, long repeat DNA was observed to possess continuous sequences that often appeared to be terminated by one or more loops and/or fold backs. Long repeat DNA sequences, resheared to 300 base pairs, were found to have an average melting point identical to that for sheared native DNA. Thus, the reassociated duplexes of long repetitive DNA seem to possess very few mismatched base pairs. Reassociation kinetic analyses indicate that the majority of the long repeat sequences are reiterated only 4--7 times per haploid amount of DNA. Melt-reassociation analyses of short repetitive DNA, at several criteria, support the previously held concept that these sequences belong the sets or families of sequences which are inexact copies of one another. Our studies also support hypotheses suggesting that short repetitive sequences belong to families which may have arisen via distinct salttatory events. The relationships between long and short repetitive DNA sequences are considered with respect to widely held concepts of their sequence organization, evolution, and possible functions within eucaryotic genomes. A model for the possible organization of short repeats within long repetitive DNA sequences is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号