首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chagas disease, caused by the parasite protozoan Trypanosoma cruzi, is characterised by a variable clinical course, from symptomless cases to severe chronic disease with cardiac and/or gastrointestinal involvement. This variability has been attributed both to differences in the host response and to genomic heterogeneity of the parasite. This article reviews the evidence in favour of an important role of the genetic constitution of T. cruzi in determining the clinical characteristics of Chagas disease and discusses the basis of the 'Clonal-Histotropic Model' for the pathogenesis of this disease.  相似文献   

2.
Chagas disease, caused by the protozoan Trypanosoma cruzi, has a variable clinical course, ranging from symptomless infection to severe chronic disease with cardiovascular or gastrointestinal involvement or even overwhelming acute episodes. The factors influencing this clinical variability have not been elucidated, but genetic variation of both the host and parasite is likely to be important. Here, Andréa M. Macedo and Sérgio D.J. Pena review the evidence showing a role for the genetic constitution of T. cruzi in determining the clinical characteristics of Chagas disease, and propose a ;clonal-histotropic model' for the pathogenesis of this disease.  相似文献   

3.
Chagas' disease is caused by the protozoan Trypanosoma cruzi and it has a variable clinical outcome. The basis for this variability relies in part on the complexity of the parasite population consisting of multiple clones displaying distinct biological properties. A major current challenge is to correlate parasite genetic variability with pathogenesis.  相似文献   

4.
Trypanosomes are protozoan parasites that cause major diseases in humans and other animals. Trypanosoma brucei and Trypanosoma cruzi are the etiologic agents of African and American Trypanosomiasis, respectively. In spite of large amounts of information regarding various aspects of their biology, including the essentially complete sequences of their genomes, studies directed towards an understanding of mechanisms related to DNA metabolism have been very limited. Recent reports, however, describing genes involved with DNA recombination and repair in T. brucei and T. cruzi, indicated the importance of these processes in the generation of genetic variability, which is crucial to the success of these parasites. Here, we review these data and discuss how the DNA repair and recombination machineries may contribute to strikingly different strategies evolved by the two Trypanosomes to create genetic variability that is needed for survival in their hosts. In T. brucei, two genetic components are critical to the success of antigenic variation, a strategy that allows the parasite to evade the host immune system by periodically changing the expression of a group of variant surface glycoproteins (VSGs). One component is a mechanism that provides for the exclusive expression of a single VSG at any one time, and the second is a large repository of antigenically distinct VSGs. Work from various groups showing the importance of recombination reactions in T. brucei, primarily to move a silent VSG into an active VSG expression site, is discussed. T. cruzi does not use the strategy of antigenic variation for host immune evasion but counts on the extreme heterogeneity of their population for parasite adaptation to different hosts. We discuss recent evidence indicating the existence of major differences in the levels of genomic heterogeneity among T. cruzi strains, and suggest that metabolic changes in the mismatch repair pathway could be an important source of antigenic diversity found within the T. cruzi population.  相似文献   

5.
BACKGROUND: Recently new aspects of the immunopathology of Chagas disease have been described in patients infected with HIV and unusual clinical manifestations such as cutaneous lesions, involvement of central nervous system and/or serious cardiac lesions related to the reactivation of the parasite have been reported. Two uncloned Trypanosoma cruzi strains previously isolated from chronic chagasic patients with HIV co-infection were studied in order to evaluate the impact of the immunosuppression on the genetic diversity of the parasite. RESULTS: We have exploited an experimental model to determine whether genetically distinct populations appear after immunosuppression as a consequence of in vivo selection or in vitro propagation. The in vitro and in vivo conditions have allowed us to study the selected populations. The first strain was isolated from a case of reactivation of Chagas disease in a patient which presented four cerebral lesions. It was possible to demonstrate that the patient was infected with at least three distinct populations of T. cruzi. The population, recovered after immunosuppression, in mice was genetically divergent from the primary human isolate. The second strain, isolated from a hemophiliac/HIV positive patient presenting cardiac manifestation of Chagas disease showed no marked genetic difference after experimental immunosuppression. CONCLUSION: The immunological condition of the patient, associated or not to the reactivation of the infection, and also the strain of the parasite may have an important role during the course of the disease. The in vivo mechanism that generates parasite genetic variability or the participation of the selection under stress conditions will require further investigation.  相似文献   

6.
Chagas disease, caused by the hemoflagellate Trypanosoma cruzi, is a public health problem in Colombia. Previous reports have indicated the presence of heterogeneity among parasite populations. Six Colombian T. cruzi strains were obtained that differed by host, geographical region and transmission cycle. The genetic variability of each was compared by random amplified polymorphic DNA (RAPD), and isoenzymes. A restriction fragment length polymorphism (RFLP) was extracted using the 1.2 kb unit encoding the parasite's H2A histone as a probe. Genetic distances between the isolates varied greatly, from 0.611 to 0.99 as determined by RAPD profiles (M13F and M13R primers), between 0 and 0.81 by RFLP profiles (5 endonucleases), and between 0.10 and 0.55 by isoenzymes (13 enzymatic systems). Genetic distance matrixes derived from each of the three methods showed that Colombian strains exhibit a high degree of genetic differentiation. This may account for the broad clinical spectrum of Chagas disease in Colombia.  相似文献   

7.
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.  相似文献   

8.
Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, has quite a variable clinical presentation, ranging from asymptomatic to severe chronic cardiac and/or gastrointestinal disease. The reason for that is not completely understood, but both parasite and host genetic traits are certainly involved. Recently, we have demonstrated clinically and experimentally that the genetic variability of T. cruzi is one of the determinants of the pattern of tissue involvement in Chagas' disease. We then decided to turn our attention to the role of host genetic background. To study this, we compared the infection of four lineages of mice [three inbred (BALB/c, DBA-2, and c57Black/6) and one outbred (Swiss)] with two T. cruzi clonal populations, the Col1.7G2 clone and the JG monoclonal strain. The tissue distribution of T. cruzi strains was identical for BALB/c and DBA-2 mice, but very different in C57BL/6 (H-2b) and outbred Swiss mice. This result clearly demonstrates the importance of host genetic aspects in the process. Since BALB/c and DBA-2 have the same H-2 haplotype (H-2d) and C57BL/6 does not (H-2b), it is possible that MHC variability may be involved in influencing the tissue distribution of involvement in experimental Chagas' disease of the mouse.Abbreviations: PCR, polymerase chain reaction; LSSP-PCR, low-stringency single specific primer PCR; kDNA, kinetoplast DNA; MHC, major histocompatibility complex; dNTP, 2-deoxynucleotide 5-triphosphate  相似文献   

9.
Schistosomiasis remains one of the most prevalent parasitic infections and has significant economic and public health consequences in many developing countries. Economic development and improvement in standard of living in these countries are dependent on the elimination of this odious disease. For the control of Schistosomiasis, understanding the host/parasite association is important, since the host parasite relationship is often complex and since questions remain concerning the susceptibility of snails to infection by respective trematodes and their specificity and suitability as hosts for continued parasite development. Thus, the long term aim of this research is to learn more about the genetic basis of the snail/parasite relationship with the hope of finding novel ways to disrupt the transmission of this disease. In the current research, genetic variability among susceptible and resistant strains within and between Biomphalaria glabrata and B. tenagophila was investigated using RAPD-PCR. The results indicate great genetic variations within the two snail species using three different primers (intrapopulational variations), while specimens from the same snail species showed few individual differences between the susceptible and resistant strains (interpopulational variation).  相似文献   

10.
In two murine models we studied Trypanosoma cruzi reinfection in the acute and chronic phase of experimental Chagas' disease in order to elucidate the relevance of reinfections in determining the variability of cardiac symptoms and the irreversible cardiac damage. They were followed for 120 and 600 days post infection (p.i.) for the acute and chronic model, respectively. Reinfected mice reached higher parasitaemia levels than infected mice. The survival was 33 and 21% in the chronic phase for mice reinfected in the acute phase and 13% for mice reinfected in the chronic stage at the end of the experiments. Sixty-six percent of the infected group presented electrocardiographic abnormalities (heart frequency, prolonged PQ segment or QRS complex) in the chronic stage whereas 100% of the reinfected animals exhibited electric cardiac dysfunction since 90 and 390 days p.i. for the acute and chronic reinfected model, respectively (P<0.01). Heart histopathological studies showed fibrosis and necrosis areas and mononuclear infiltrates supporting the view that parasite persistence is a major factor in continuing the tissue inflammation. This work shows that T. cruzi reinfections could be related to the variability and severity of the clinical course of Chagas' disease and that parasite persistence is involved in exacerbation of the disease.  相似文献   

11.
Chagas disease caused by Trypanosoma cruzi is a complex disease that is endemic and an important problem in public health in Latin America. The T. cruzi parasite is classified into six discrete taxonomic units (DTUs) based on the recently proposed nomenclature (TcI, TcII, TcIII, TcIV, TcV and TcVI). The discovery of genetic variability within TcI showed the presence of five genotypes (Ia, Ib, Ic, Id and Ie) related to the transmission cycle of Chagas disease. In Colombia, TcI is more prevalent but TcII has also been reported, as has mixed infection by both TcI and TcII in the same Chagasic patient. The objectives of this study were to determine the T. cruzi DTUs that are circulating in Colombian chronic Chagasic patients and to obtain more information about the molecular epidemiology of Chagas disease in Colombia. We also assessed the presence of electrocardiographic, radiologic and echocardiographic abnormalities with the purpose of correlating T. cruzi genetic variability and cardiac disease. Molecular characterization was performed in Colombian adult chronic Chagasic patients based on the intergenic region of the mini-exon gene, the 24Sα and 18S regions of rDNA and the variable region of satellite DNA, whereby the presence of T.cruzi I, II, III and IV was detected. In our population, mixed infections also occurred, with TcI-TcII, TcI-TcIII and TcI-TcIV, as well as the existence of the TcI genotypes showing the presence of genotypes Ia and Id. Patients infected with TcI demonstrated a higher prevalence of cardiac alterations than those infected with TcII. These results corroborate the predominance of TcI in Colombia and show the first report of TcIII and TcIV in Colombian Chagasic patients. Findings also indicate that Chagas cardiomyopathy manifestations are more correlated with TcI than with TcII in Colombia.  相似文献   

12.
Although metacyclic and blood trypomastigotes are completely functional in relation to parasite-host interaction and/or target cell invasion, they differ in the molecules present on the surface. Thus, aspects related to the variability that the forms of T. cruzi interacts with host cells may lead to fundamental implications on the immune response against this parasite and, consequently, the clinical evolution of Chagas disease. We have shown that BT infected mice presented higher levels of parasitemia during all the acute phase of infection. Moreover, the infection with either MT or BT forms resulted in increased levels of total leukocytes, monocytes and lymphocytes, specifically later for MT and earlier for BT. The infection with BT forms presented earlier production of proinflammatory cytokine TNF-α and later of IFN-γ by both T cells subpopulations. This event was accompanied by an early cardiac inflammation with an exacerbation of this process at the end of the acute phase. On the other hand, infection with MT forms result in an early production of IFN-γ, with subsequent control in the production of this cytokine by IL-10, which provided to these animals an immunomodulatory profile in the end of the acute phase. These results are in agreement with what was found for cardiac inflammation where animals infected with MT forms showed intense cardiac inflammation later at infection, with a decrease in the same at the end of this phase. In summary, our findings emphasize the importance of taking into account the inoculums source of T. cruzi, since vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase that may influence relevant biological aspects of chronic Chagas disease.  相似文献   

13.
Trypanosoma cruzi is the etiologic agent of Chagas' disease, a parasitic disease of enormous importance in Latin America. Herein we review the studies that revealed the receptors from innate immunity that are involved in the recognition of this protozoan parasite. We showed that the recognition of T. cruzi and its components occurs through Toll-like receptors (TLR) 2/CD14. Further, we showed in vivo the importance of the myeloid differentiation factor (MyD88), an adapter protein essential for the function of TLRs, in determining the parasitemia and mortality rate of mice infected with T. cruzi. We also discuss the implications of these findings in the pathophysiology of Chagas' disease.  相似文献   

14.
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important cause of heart disease in Latin America. The parasite is transmitted mucosally, with both intra- and extracellular life stages in the human host. Cruzipain, the major cysteinyl proteinase of T. cruzi, has been shown to be antigenic in both humans and mice during infection with the parasite. We extend these observations, showing here that multiple murine immune subsets of potential importance for vaccine-induced protection can be induced by cruzipain. Cruzipain-specific serum IgG responses were induced during chronic infection with T. cruzi. In addition, T. cruzi mucosal infection stimulated the development of cruzipain-specific secretory IgA detectable in fecal extracts from infected mice. Cruzipain-specific type 1 cytokine responses characterized by the production of IFN-gamma but not IL-4 were also detectable during murine infection. Furthermore, immunization of mice with a DNA vaccine encoding cruzipain was shown to stimulate cytotoxic T lymphocyte (CTL) responses capable of recognizing and lysing T. cruzi-infected cells. The induction of serum antibody, mucosal IgA, Th1 cytokine and CTL responses by cruzipain in mice supports the use of this parasite protein for further efforts in T. cruzi vaccine development.  相似文献   

15.
Congenital Chagas disease acquired special importance in Chile after the certification of the control of Triatoma infestans and transmission by blood donors affected with Trypanosoma cruzi. In order to establish adequate protocols for intervention and control in infected mother-neonate pairs in endemic zones of Chagas disease, we present partial results (2005-2008) of a pilot project which is being carried out in the Province of Choapa, IV Region, Chile, whose objectives are: determine the current prevalence of the disease in pregnant women, estimate the incidence of vertical transmission of T. cruzi to newborns, determine the lineages of the parasite present in mothers who do and do not transmit the disease, determine the prevalence of Chagas disease in maternal grandmothers of neonates and study placental histopathology. Preliminary results indicated that in this study period, 3.7% of the women who gave birth in the Province have Chagas disease and 2.5% of their newborns were infected. The most frequent T. cruzi genotypes found in mothers studied during pregnancy were TCI and TCIId, either alone or in mixed infections. A high percentage (74.3%) of the grandmothers studied was infected with the parasite. In 29 placentas from mothers with Chagas disease we observed edema, necrosis, fibrinoid deposits and slight lymphoplasmocyte infiltration. In three placentas we found erythroblastosis and in one of them amastigote forms of T. cruzi; this was one of the cases of congenital infection. The evaluation of the diagnostic and control protocols generated will allow us to determine if it has been possible to modify the natural history of vertical transmission of T. cruzi in Chile.  相似文献   

16.
A role for parasite genetic variability in the spectrum of Chagas disease is emerging but not yet evident, in part due to an incomplete understanding of the population structure of Trypanosoma cruzi. To investigate further the observed genotypic variation at the sequence and chromosomal levels in strains of standard and field-isolated T. cruzi we have undertaken a comparative analysis of 10 regions of the genome from two isolates representing T. cruzi I (Dm28c and Silvio X10) and two from T. cruzi II (CL Brener and Esmeraldo). Amplified regions contained intergenic (non-coding) sequences from tandemly repeated genes. Multiple nucleotide polymorphisms correlated with the T. cruzi I/T. cruzi II classification. Two intergenic regions had useful polymorphisms for the design of classification probes to test on genomic DNA from other known isolates. Two adjacent nucleotide polymorphisms in HSP 60 correlated with the T. cruzi I and T. cruzi II distinction. 1F8 nucleotide polymorphisms revealed multiple subdivisions of T. cruzi II: subgroups IIa and IIc displayed the T. cruzi I pattern; subgroups IId and IIe possessed both the I and II patterns. Furthermore, isolates from subgroups IId and IIe contained the 1F8 polymorphic markers on different chromosome bands supporting a genetic exchange event that resulted in chromosomes V and IX of T. cruzi strain CL Brener. Based on these analyses, T. cruzi I and subgroup IIb appear to be pure lines, while subgroups IIa/IIc and IId/IIe are hybrid lines. These data demonstrate for the first time that IIa/IIc are hybrid, consistent with the hypothesis that genetic recombination has occurred more than once within the T. cruzi lines.  相似文献   

17.
Many studies have attempted to assess the relative effects of different vectors of a disease on animal populations. To this end, three measures have been proposed: Vectorial efficiency, Vectorial capacity and recently Vectorial effectiveness (or Vectorial impact). In this study we relate these measures to derive some of their properties emphasising in the vectorial impact for its importance in both, population performance of parasites and the proportion of the prevalence of one parasite due to a given vector. We applied the quantitative expressions advanced in this study to a simple Chilean example with one parasite (Trypanosoma cruzi), two vectors (Triatoma infestans and Mepraia spinolai) and one animal population (humans: Chagas's disease).  相似文献   

18.
The ancient question of trypanosome sexuality has recently been reactivated in view of important observations in the African species Trypanosoma brucie, in which Mendelian sexuality has been proposed as a working hypothesis on the basis o f indirect isozyme evidence. Subsequent experiments have confirmed that recombination can occur in T. brucei under defined experimental conditions and suggest that this parasite undergoes meiosis. In this article, Michel Tibayrenc and Francisco Ayala discuss the intraspecific variability of another species, Tyapanosoma cruzi - causative agent of american trypanosomiasis or Chagas disease. They interpret the variation revealed by extensive isozyme analysis and restriction endonuclease analysis of kinetoplast DNA, to suggest that T. cruzi is diploid, genetically very polymorphic, and has a clonal structure that manifests a lack of (or very restricted) sexuality.  相似文献   

19.
Schistosomes are gonochoric blood parasites with a complex life cycle responsible for a disease of considerable medical and veterinary importance in tropical and subtropical regions. Understanding the evolution of schistosome genetic diversity is clearly of fundamental importance to interpreting schistosomiasis epidemiology and disease transmission patterns of this parasite. In this article, we investigated the putative role of the host immune system in the selection of male genetic diversity. We demonstrated the link between genetic dissimilarity and the protective effect among male worms. We then compared the proteomes of three male clones with different genotypes and differing by their capacity to protect against reinfection. The identified differences correspond mainly to antigens known or supposed to be involved in the induction of protective immunity. These results underline the role played by host immune system in the selection of schistosome genetic diversity that is linked to antigenic diversity. We discuss the evolutionary consequences in the context of schistosome infection.  相似文献   

20.
The single celled eukaryote Trypanosoma cruzi, a parasite transmitted by numerous species of triatomine bug in the Americas, causes Chagas disease in humans. T. cruzi generally reproduces asexually and appears to have a clonal population structure. However, two of the six major circulating genetic lineages, TcV and TcVI, are TcII-TcIII inter-lineage hybrids that are frequently isolated from humans in regions where chronic Chagas disease is particularly severe. Nevertheless, a prevalent view is that hybridisation events in T. cruzi were evolutionarily ancient and that active recombination is of little epidemiological importance. We analysed genotypes of hybrid and non-hybrid T. cruzi strains for markers representing three distinct evolutionary rates: nuclear GPI sequences (n?=?88), mitochondrial COII-ND1 sequences (n?=?107) and 28 polymorphic microsatellite loci (n?=?35). Using Maximum Likelihood and Bayesian phylogenetic approaches we dated key evolutionary events in the T. cruzi clade including the emergence of hybrid lineages TcV and TcVI, which we estimated to have occurred within the last 60,000 years. We also found evidence for recent genetic exchange between TcIII and TcIV and between TcI and TcIV. These findings show that evolution of novel recombinants remains a potential epidemiological risk. The clearly distinguishable microsatellite genotypes of TcV and TcVI were highly heterozygous and displayed minimal intra-lineage diversity indicative of even earlier origins than sequence-based estimates. Natural hybrid genotypes resembled typical meiotic F1 progeny, however, evidence for mitochondrial introgression, absence of haploid forms and previous experimental crosses indicate that sexual reproduction in T. cruzi may involve alternatives to canonical meiosis. Overall, the data support two independent hybridisation events between TcII and TcIII and a recent, rapid spread of the hybrid progeny in domestic transmission cycles concomitant with, or as a result of, disruption of natural transmission cycles by human activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号