首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidatively damaged thymine, 5-formyluracil (5-fU), was incorporated into a predetermined site of double-stranded shuttle vectors. The nucleotide sequences in which the modified base was incorporated were 5'-CFTAAG-3' and 5'-CTFAAG-3' (F represents 5-fU), the recognition site for the restriction enzyme AflII (5'-CTTAAG-3'). The 5-fU was incorporated into a template strand of either the leading or lagging strand of DNA replication. The modified DNAs were transfected into simian COS-7 cells, and the DNAs replicated in the cells were recovered and were analyzed after the second transfection into Escherichia coli. The 5-fU did not block DNA replication in mammalian cells. The 5-fU residues were weakly mutagenic, and their mutation frequencies in double-stranded vectors were 0.01-0.04%. The T --> G and T --> A transversions were the mutations found most frequently, suggesting the formation of 5-fU.C and 5-fU.T base pairs, respectively. This is the first report that clearly shows the induction of transversion mutations by an oxidized pyrimidine base in DNA in mammalian cells.  相似文献   

2.
Nucleotide incorporation opposite an oxidative form of adenine, 2-hydroxyadenine (2-OH-Ade) was investigated. When a primed template with 2-OH-Ade was treated with an exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I (KFexo-), recombinant rat DNA polymerase beta (pol beta) or calf thymus DNA polymerase alpha (pol alpha), incorporation of dTMP and dAMP was observed. In addition, KFexo- inserted dGMP as well. A steady-state kinetic study indicated that the insertion of dAMP and dTMP opposite the DNA lesion occurred with similar frequency with KFexo- and pol beta. Insertion of dTMP opposite 2-OH-Ade was favored to that of dAMP by pol alpha. Chain extension from the A.2-OH-Ade pair is less favored than that from the T.2-OH-Ade pair by all three DNA polymerase. Analysis of full-length products of in vitro DNA synthesis showed that dTMP and dAMP were incorporated by DNA polymerases and that exonuclease-proficient and -deficient Klenow fragments also inserted dGMP opposite 2-OH-Ade. These results suggest that formation of 2-OH-Ade from A in DNA will induce A-->T and A-->C transversions in cells.  相似文献   

3.
An oligodeoxyribonucleotide containing 8-hydroxyadenine (OH8Ade) was chemically synthesized and single- and double-stranded c-Ha-ras gene fragments with OH8Ade at the second position of codon 61 were prepared. The single-stranded ras gene fragment was used as a template for in vitro DNA synthesis with the Klenow fragment of Escherichia coli DNA polymerase I, Taq DNA polymerase, rat DNA polymerase beta and mouse DNA polymerase alpha. The former two enzymes exclusively incorporated dTMP opposite OH8Ade. The DNA polymerases alpha and beta misinserted dGMP, and dAMP and dGMP, respectively. The c-Ha-ras gene was constructed using the double-stranded ras gene fragment containing OH8Ade and was transfected into NIH 3T3 cells. The gene with OH8Ade induced focus formation, indicating that OH8Ade elicited point mutations in cells. When c-Ha-ras genes present in transformed cells were analyzed, an A-->G transition and an A-->C transversion were detected. These results indicate that OH8Ade induced misincorporation in in vitro DNA synthesis and mutations in mammalian cells.  相似文献   

4.
To examine the mutagenicity of 5-formylcytosine (5-fC), an oxidation product of 5-methylcytosine (5-mC), 5-fC was incorporated into predetermined sites of double-stranded shuttle vectors. The nucleotide sequences in which the modified base was incorporated were 5'-AFGCGT-3' and 5'-ACGFGT-3' (F represents 5-fC), the recognition site for the restriction enzyme MluI (5'-ACGCGT-3'). 5-fC was incorporated into the template strand of either the leading or lagging strand of DNA replication. The modified DNAs were transfected into simian COS-7 cells, and the DNAs replicated in the cells were recovered and analyzed after a second transfection into Escherichia coli. 5-fC weakly blocked DNA replication in mammalian cells. The 5-fC residues were mutagenic, with mutation frequencies in double-stranded vectors of 0.03-0.28%. The mutation spectrum of 5-fC was broad, and included targeted (5-fC-->G, 5-fC-->A, and 5-fC-->T) and untargeted mutations. These results suggest that the oxidation of 5-mC results in mutations at and around the modified sites.  相似文献   

5.
The shuttle vector plasmid PCF3A, carrying the supF target gene, can be transfected into monkey COS7 cells as single-stranded or double-stranded DNA. Single strand-derived plasmid progeny exhibited a 10-fold higher spontaneous mutation frequency than double strand-derived progeny. The location of spontaneous mutations obtained after transfection of the single-stranded vector shared similarities with that for double-stranded vectors. However, the nature of base changes was very different. Single-stranded PCF3A DNA was used to study ultraviolet-induced mutagenesis. An earlier report (Madzak and Sarasin, J. Mol. Biol., 218 (1991) 667-673) showed that single-stranded DNA exhibited a lower survival and a higher mutation frequency than double-stranded DNA after ultraviolet irradiation. In the present report, sequence analysis of mutant plasmids is presented. The use of a single-stranded vector allowed us to show the targeting of mutations at putative lesion sites and to determine the exact nature of the base implicated in each mutation. Frameshift mutations were more frequent after transfection of control or irradiated plasmid as single-stranded DNA than as double-stranded DNA. Multiple mutations, observed at a high frequency in the spontaneous and ultraviolet-induced mutation spectra following single-stranded DNA transfection, could be due to an error-prone polymerisation step acting on a single-stranded template.  相似文献   

6.
Codon 273 ((5)(')CGT) of the human P53 gene is a mutational hot spot for the environmental carcinogen benzo[a]pyrene. We incorporated a single (+)- or (-)-trans-anti-benzo[a]pyrene diol epoxide (BPDE) DNA adduct at the second position of codon 273 of the human P53 gene and explored the mutagenic potential of this lesion in mammalian cells. Oligodeoxyribonucleotides ((5)(')GAGGTGCG(BPDE)TGTTTGT) modified with (+)- or (-)-trans-dG-N(2)-BPDE were incorporated into single-stranded shuttle vectors and transfected into simian kidney cells. Progeny plasmids were then used to transform Escherichia coli DH10B. Transformants were analyzed by oligodeoxynucleotide hybridization and DNA sequence analysis to establish the mutation frequency and spectrum produced by the adducted base. We determined the mutational frequencies associated with (+)-trans-dG-N(2)-BPDE and (-)-trans-dG-N(2)-BPDE adduction to be 26.5% and 17.5%, respectively. The predominant mutations generated by both stereoisomers were G --> T transversions, with some G --> A transitions. When the cytosine 5' to dG-N(2)-BPDE was replaced by 5-methylcytosine, the mutational frequencies of (+)-trans-dG-N(2)-BPDE and (-)-trans-dG-N(2)-BPDE were reduced to 11.1% and 10.6%, respectively, while the mutational specificity remained unchanged. Thus, the mutational "hot spot" at codon 273 in P53 may reflect either sequence-specific reactivity of BPDE and/or inefficient repair of BPDE-DNA adducts positioned at this site.  相似文献   

7.
Oxidatively damaged thymine, 5-formyluracil (5-fU), was incorporated into a predetermined site of double-stranded shuttle vectors. The nucleotide sequences in which the modified base was incorporated were 5′-CFTAAG-3′ and 5′-CTFAAG-3′ (F represents 5-fU), the recognition site for the restriction enzyme AflII (5′-CTTAAG-3′). The 5-fU was incorporated into a template strand of either the leading or lagging strand of DNA replication. The modified DNAs were transfected into simian COS-7 cells, and the DNAs replicated in the cells were recovered and were analyzed after the second transfection into Escherichia coli. The 5-fU did not block DNA replication in mammalian cells. The 5-fU residues were weakly mutagenic, and their mutation frequencies in double-stranded vectors were 0.01–0.04%. The T → G and T → A transversions were the mutations found most frequently, suggesting the formation of 5-fU·C and 5-fU·T base pairs, respectively. This is the first report that clearly shows the induction of transversion mutations by an oxidized pyrimidine base in DNA in mammalian cells.  相似文献   

8.
The toxicity and mutagenicity of three DNA adducts formed by the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) were investigated in Escherichia coli. The adducts studied were cis-[Pt(NH3)2(d(GpG))] (G*G*), cis-[Pt(NH3)2(d(ApG))] (A*G*) and cis-[Pt(NH3)2(d(GpTpG))] (G*TG*), which collectively represent approximately 95% of the DNA adducts reported to form when the drug damages DNA. Oligonucleotide 24-mers containing each adduct were positioned at a known site within the viral strand of single stranded M13mp7L2 bacteriophage DNA. Following transfection into E. coli DL7 cells, the genomes containing the G*G*, A*G* and G*TG* adducts had survival levels of 5.2 +/- 1.2, 22 +/- 2.6 and 14 +/- 2.5% respectively, compared to unmodified genomes. Upon SOS induction, the survival of genomes containing the G*G* and A*G* adducts increased to 31 +/- 5.4 and 32 +/- 4.9% respectively. Survival of the genome containing the G*TG* adduct did not increase upon SOS induction. In SOS induced cells, the G*G* and A*G* adducts gave rise predominantly to G-->T and A-->T transversions respectively, targeted to the 5' modified base. In addition, A-->G transitions were detected for the A*G* adduct and low levels of tandem mutations at the 5' modified base as well as the adjacent 5' base were also observed for both adducts. The A*G* adduct was more mutagenic than the G*G* adduct, with a mutation frequency of 6% compared to 1.4% for the latter adduct. No cis-[Pt(NH3)2)2+ intrastrand crosslink-specific mutations were observed for the G*TG* adduct.  相似文献   

9.
The biological activity of TA*, the major photoproduct of thymidylyl-(3',5')-deoxyadenosine, has remained speculative since it was identified a decade ago. To determine the mutagenicity of TA* in Escherichia coli, we constructed the replicative form of an M13mp18-derived phage containing TA* in the (-)-strand by polymerase-catalyzed elongation of a TA*-containing 49mer opposite a uracil-containing (+)-strand of the phage. The in vitro synthesis mixture was transfected into an ung+, phr- E.coli host and the progeny were screened with a hybridization probe unique for the (-)-strand. TA* was found to block DNA replication substantially in the absence of SOS, but under SOS, TA* was bypassed more efficiently and was highly mutagenic. Among 56 analyzed (-)-strand progeny from two transfections, 46 (82%) were mutants, including six (11%) tandem mutants. The most abundant mutation was a 3'A-->T substitution (31/46, 56%). The possible biological consequences of TA* formation in the highly conserved TATA box consensus sequence on gene expression are discussed in light of the mutagenicity of TA*.  相似文献   

10.
Canavan disease: mutations among Jewish and non-jewish patients.   总被引:9,自引:4,他引:5  
Canavan disease is an autosomal recessive leukodystrophy caused by the deficiency of aspartoacylase (ASPA). Sixty-four probands were analyzed for mutations in the ASPA gene. Three point mutations--693C-->A, 854A-->C, and 914C-->A--were identified in the coding sequence. The 693C-->A and 914C-->A base changes, resulting in nonsense tyr231-->ter and missense ala305-->glu mutations, respectively, lead to complete loss of ASPA activity in in vitro expression studies. The 854A-->C transversion converted glu to ala in codon 285. The glu285-->ala mutant ASPA has 2.5% of the activity expressed by the wild-type enzyme. A fourth mutation, 433 --2(A-->G) transition, was identified at the splice-acceptor site in intron 2. The splice-site mutation would lead to skipping of exon 3, accompanied by a frameshift, and thus would produce aberrant ASPA. Of the 128 unrelated Canavan chromosomes analyzed, 88 were from probands of Ashkenazi Jewish descent. The glu285-->ala mutation was predominant (82.9%) in this population, followed by the tyr231-->ter (14.8%) and 433 --2(A-->G) (1.1%) mutations. The three mutations account for 98.8% of the Canavan chromosomes of Ashkenazi Jewish origin. The ala305-->glu mutation was found exclusively in non-Jewish probands of European descent and constituted 60% of the 40 mutant chromosomes. Predominant occurrence of certain mutations among Ashkenazi Jewish and non-Jewish patients with Canavan disease would suggest a founding-father effect in propagation of these mutant chromosomes.  相似文献   

11.
Acrolein is produced extensively in the environment by incomplete combustion of organic materials, and it arises endogenously in humans as a metabolic by-product. Acrolein reacts with DNA at guanine residues to form the exocyclic adduct, 8-hydroxypropanodeoxyguanosine (HOPdG). Acrolein is mutagenic, and a correlation exists between HOPdG levels in Salmonella typhimurium treated with acrolein and a resultant increase in mutation frequency. Site-specifically modified oligonucleotides were used to explore the mutagenic potential of HOPdG in Escherichia coli strains that were either wild-type for repair or deficient in nucleotide excision repair or base excision repair. Oligonucleotides modified with HOPdG were inserted into double-stranded bacteriophage vectors using the gapped-duplex method or into single-stranded bacteriophage vectors and transformed into SOS-induced E. coli strains. Progeny phage were analyzed by oligonucleotide hybridization to establish the mutation frequency and the spectrum of mutations produced by HOPdG. The correct base, dCMP, was incorporated opposite HOPdG in all circumstances tested. In contrast, in vitro lesion bypass studies showed that HOPdG causes misincorporation opposite the modified base and is a block to replication. The combination of these studies showed that HOPdG is not miscoding in vivo at the level of sensitivity of these site-specific mutagenesis assays.  相似文献   

12.
We investigated the thermodynamic stability of double-stranded DNAs with an oxidative DNA lesion, 2-hydroxyadenine (2-OH-Ade), in two different sequence contexts (5′-GA*C-3′ and 5′-TA*A-3′, A* represents 2-OH-Ade). When an A*–N pair (N, any nucleotide base) was located in the center of a duplex, the thermodynamic stabilities of the duplexes were similar for all the natural bases except A (N = T, C and G). On the other hand, for the duplexes with the A*–N pair at the end, which mimic the nucleotide incorporation step, the stabilities of the duplexes were dependent on their sequence. The order of stability is T > G > C >> A in the 5′-GA*C-3′ sequences and T > A > C > G in the 5′-TA*A-3′ sequences. Because T/G/C and T/A are nucleotides incorporated opposite to 2-OH-Ade in the 5′-GA*C-3′ and 5′-TA*A-3′ sequences, respectively, these results agree with the tendency of mutagenic misincorporation of the nucleotides opposite to 2-OH-Ade in vitro. Thus, the thermodynamic stability of the A*–N base pair may be an important factor for the mutation spectra of 2-OH-Ade.  相似文献   

13.
The association of autosomal recessive phosphorylase kinase deficiency in liver of a 3 1/2-year-old female child with mutations in the gene encoding the common part of the beta subunit of phosphorylase kinase is reported. The proband had a severe deficiency of phosphorylase kinase in liver, while the phosphorylase kinase activity in erythrocytes was only slightly diminished. She had no symptoms of muscle involvement. The complete coding sequences of the liver gamma subunit and of the beta subunit of phosphorylase kinase of the proband were analyzed for the presence of mutations, by either reverse-transcribed PCR or SSCP analysis. Three deviations from the normal sequence were found in the region encoding the common part of the beta subunit of phosphorylase kinase-namely, a 1827G-->A (W609X) transition, a 2309A-->G (Y770C) transition, and a deletion of nucleotides 2896-2911-whereas no mutations were detected in the sequence encoding the liver gamma subunit of phosphorylase kinase. The 1827G-->A mutation and the deletion both result in the formation of early stop codons. Investigation of DNA showed that the deletion is caused by a splice-acceptor site mutation (IVS30(-1),g-->t). Family analysis revealed that the 1827G-->A and IVS30(-1),g-->t substitutions are located on different parental chromosomes and that compound heterozygosity for these mutations segregates with the disease. The 2309A-->G mutation was detected in 2%-3% of the normal population. Thus, it is concluded that the deficiency of phosphorylase kinase in this proband is caused by compound heterozygosity for the 1827G-->A and the IVS30(-1),g-->t mutations and that the 2309A-->G mutation is a polymorphism. This implies that a defect in the sequence encoding the common part of the beta subunit of phosphorylase kinase may present as liver phosphorylase kinase deficiency.  相似文献   

14.
A genetic enrichment procedure for mutations constructed by oligodeoxynucleotide(oligo)-directed mutagenesis of DNA cloned in M13mp vectors is described. The procedure uses an M13 vector that contains the cloned target DNA and amber (am) mutations within the phage genes I and II. This vector cannot replicate in a suppressor-free (sup degrees) bacterial strain. A gapped heteroduplex is formed by annealing portions of a complementary (-)strand containing wild-type copies of genes I and II to the am-containing template (+)strand. The oligo is annealed to the single-stranded (ss) region and the remaining gaps and nicks are repaired enzymatically to form a closed circular heteroduplex structure. By transfecting the DNA into a sup degrees host we promote the propagation of heteroduplexes with the oligo-containing (-)strand since only this construction contains the wild-type copies of genes I and II. This procedure eliminates the need for any physical separation of the covalently closed circular DNA that contains the oligo from the ss template. Using this technique we have constructed 17 point mutations with mutation frequencies ranging from 2-20% for single base changes and from 0.3-9% for multiple base changes. In addition, we found that the mutation frequencies were affected by the state of DNA methylation in the (+) and (-)strands.  相似文献   

15.
Recently, we showed that homozygosity for the common 677(C-->T) mutation in the methylenetetrahydrofolate reductase (MTHFR) gene, causing thermolability of the enzyme, is a risk factor for neural-tube defects (NTDs). We now report on another mutation in the same gene, the 1298(A-->C) mutation, which changes a glutamate into an alanine residue. This mutation destroys an MboII recognition site and has an allele frequency of .33. This 1298(A-->C) mutation results in decreased MTHFR activity (one-way analysis of variance [ANOVA] P < .0001), which is more pronounced in the homozygous than heterozygous state. Neither the homozygous nor the heterozygous state is associated with higher plasma homocysteine (Hcy) or a lower plasma folate concentration-phenomena that are evident with homozygosity for the 677(C-->T) mutation. However, there appears to be an interaction between these two common mutations. When compared with heterozygosity for either the 677(C-->T) or 1298(A-->C) mutations, the combined heterozygosity for the 1298(A-->C) and 677(C-->T) mutations was associated with reduced MTHFR specific activity (ANOVA P < .0001), higher Hcy, and decreased plasma folate levels (ANOVA P <.03). Thus, combined heterozygosity for both MTHFR mutations results in similar features as observed in homozygotes for the 677(C-->T) mutation. This combined heterozygosity was observed in 28% (n =86) of the NTD patients compared with 20% (n =403) among controls, resulting in an odds ratio of 2.04 (95% confidence interval: .9-4.7). These data suggest that the combined heterozygosity for the two MTHFR common mutations accounts for a proportion of folate-related NTDs, which is not explained by homozygosity for the 677(C-->T) mutation, and can be an additional genetic risk factor for NTDs.  相似文献   

16.
Using a conditional expression system with the temperature-inducible lambda PL promoter, we previously showed that the single mutations 13U-->A and 914A-->U, and the double mutation 13U-->A and 914A-->U in Escherichia coli 16S ribosomal RNA impair the binding of streptomycin (Pinard et al., The FASEB Journal, 1993, 7, 173-176). In this study, we found that the two single mutations and the double mutation increase translational fidelity, reducing in vivo readthrough of nonsense codons and frameshifting, and decreasing in vitro misincorporation in a poly(U)-directed system. Using oligodeoxyribonucleotide probes which hybridize to the 530 loop and to the 1400 region of 16S rRNA, two regions involved in the control of tRNA binding to the A site, we observed that the mutations in rRNA increase the binding of the probe to the 530 loop but not to the 1400 region. We suggest that the mutations at positions 13 and 914 of 16S rRNA induce a conformational rearrangement in the 530 loop, which contributes to the increased accuracy of the ribosome.  相似文献   

17.
We designed a shuttle vector system that allowed a comparison of the mutation spectrum on the supF target gene after transfection of single-stranded or double-stranded DNA into monkey cells. Single-strand-derived plasmids exhibited a spontaneous mutation frequency tenfold higher than double-strand-derived ones. These spontaneous mutations comprised deletions and point substitutions. This system was applied to the study of ultraviolet-induced mutagenesis. Single-stranded DNA exhibited a lower survival and a higher mutation frequency than double-stranded DNA after identical ultraviolet-irradiation. The use of single-stranded DNA allowed us to confirm and complete the data about the targeting of ultraviolet-induced mutations and the exact nature of the base changes involved. One class of mutations was more frequent after transfection of ultraviolet-irradiated single-stranded DNA than for double-stranded DNA: frameshifts represented 10% of the mutants. Multiple mutations, attributed by some authors to an error-prone excision repair process, have also been observed in the spontaneous and ultraviolet-induced mutation spectra following single-stranded DNA transfection, although it cannot be a direct substrate for excision repair.  相似文献   

18.
In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3–10 fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts form recalcitrant plant species.Abbreviations ss single-stranded - ds double-stranded - CAT chloramphenicol acetyl transferase - NPTII neomycin phosphotransferase II - RT room temperature  相似文献   

19.
DNA damage caused by catechol estrogens has been shown to play an etiologic role in tumor formation. Catechol estrogens are reactive to DNA and form several DNA adducts via their quinone forms. To explore the mutagenic properties of 2-hydroxyestrogen-derived DNA adducts in mammalian cells, N(2)-(2-hydroxyestrogen-6-yl)-2'-deoxyguanosine and N(6)-(2-hydroxyestrogen-6-yl)-2'-deoxyadenosine adducts induced by quinones of 2-hydroxyestrone, 2-hydroxyestradiol, or 2-hydroxyestriol were incorporated site-specifically into the oligodeoxynucleotides ((5)(')TCCTCCTCXCCTCTC, where X is dG, dA, 2-OHE-N(2)-dG, or 2-OHE-N(6)-dA). The modified oligodeoxynucleotides were inserted into single-stranded phagemid vectors followed by transfection into simian kidney (COS-7) cells. Preferential incorporation of dCMP, the correct base, was observed opposite all 2-OHE-N(2)-dG adducts. Only targeted G --> T transversions were detected; the highest mutation frequency (18.2%) was observed opposite the 2-OHE(2)-N(2)-dG adduct, followed by 2-OHE(1)-N(2)-dG (4.4%) and 2-OHE(3)-N(2)-dG (1.3%). When 2-OHE-N(6)-dA adducts were used, preferential incorporation of dTMP, the correct base, was observed. Targeted mutations representing A --> T transversions were detected, accompanied by small numbers of A --> G transitions. The highest mutation frequencies were observed with 2-OHE(1)-N(6)-dA and 2-OHE(3)-N(6)-dA (14.5 and 14.1%, respectively), while 2-OHE(2)-N(6)-dA exhibited a mutation frequency of only 6.0%. No mutations were detected with vectors containing unmodified oligodeoxynucleotides. Thus, 2-OHE quinone-derived DNA adducts are mutagenic, generating primarily G --> T and A --> T mutations in mammalian cells. The mutational frequency varied depending on the nature of the 2-OHE moiety.  相似文献   

20.
Cleavage of phosphorothioate-substituted DNA by restriction endonucleases   总被引:7,自引:0,他引:7  
M13 RF DNA was synthesized in vitro in the presence of various single deoxynucleoside 5'-O-(1-thiotriphosphate) phosphorothioate analogues, and the three other appropriate deoxynucleoside triphosphates using a M13 (+)-single-stranded template, Escherichia coli DNA polymerase I and T4 DNA ligase. The resulting DNAs contained various restriction endonuclease recognition sequences which had been modified at their cleavage points in the (-)-strand by phosphorothioate substitution. The behavior of the restriction enzymes AvaI, BamHI, EcoRI, HindIII, and SalI towards these substituted DNAs was investigated. EcoRI, BamHI, and HindIII were found to cleave appropriate phosphorothioate-substituted DNA at a reduced rate compared to normal M13 RF DNA, and by a two-step process in which all of the DNA is converted to an isolable intermediate nicked molecule containing a specific discontinuity at the respective recognition site presumably in the (+)-strand. By contrast, SalI cleaved substituted DNA effectively without the intermediacy of a nicked form. AvaI, however, is only capable of cleaving the unsubstituted (+)-strand in appropriately modified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号