首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+-dependent regulation of the ion current through the alpha1Cbeta2aalpha2delta-1 (L-type) calcium channel transiently expressed in HEK 293 cells was investigated using whole cell patch clamp method. Ca2+ or Na+ ions were used as a charge carrier. Intracellular Ca2+ was either buffered by 10 mM EGTA or 200 microM Ca2+ was added into non-buffered intracellular solution. Free intracellular Ca2+ inactivated permanently about 80% of the L-type calcium current. The L-type calcium channel inactivated during a depolarizing pulse with two time constants, tau(fast) and tau(slow). Free intracellular calcium accelerated both time constants. Effect on the tau(slow) was more pronounced. About 80% of the channel inactivation during brief depolarizing pulse could be attributed to a Ca2+-dependent mechanism and 20% to a voltage-dependent mechanism. When Na+ ions were used as a charge carrier, the L-type current still inactivated with two time constants that were 10 times slower and were virtually voltage-independent. Ca2+ ions stabilized the inactivated state of the channel in a concentration-dependent manner.  相似文献   

2.
Herein, we report the first characterization of Shab slow inactivation. Open Shab channels inactivate within seconds, with two voltage-independent time constants. Additionally, Shab presents significant closed-state inactivation. We found that with short depolarizing pulses, shorter than the slowest inactivation time constant, the resulting inactivation curve has a marked U-shape, but as pulse duration increases, approaching steady-state conditions, the U-shape vanishes, and the resulting inactivation curves converge to the classical Boltzmann h curve. Regarding the mechanism of inactivation, we found that external K+ and TEA facilitate both open- and closed-state inactivation, while the cavity blocker quinidine hinders inactivation. These results together with our previous observations regarding the K+-dependent stability of the K+ conductance, suggest the novel hypothesis that inactivation of Shab channels, and possibly that of other Kv channels whose inactivation is facilitated by K+, does not involve a significant narrowing of the extracellular entry of the pore. Instead, we hypothesize that there is only a rearrangement of a more internal segment of the pore that affects the central cavity and halts K+ conduction.  相似文献   

3.
A functional model for the in vitro inactivation of voltage-dependent K(+) channels is developed. The model expresses the activity as a function of the aminopyridine pK(a), the interaction energy with the receptor, and a quotient of partition functions. Molecular quantum similarity theory is introduced in the model to express the activity as a function of the principal components of the similarity matrix for a series of agonists. To validate the model, a set of five active (protonated) aminopyridines is considered: 2-aminopyridine, 3-aminopyridine, 4-aminoquinoleine, 4-aminopyridine, and 3,4-diaminopyridine. A regression analysis of the model gives good results for the variation of the observed activity with the overlap similarity index when pyridinic rings are superposed. The results support the validity of the model, and the hypothesis of a ligand-receptor entropy variation depending mainly on the nature of the ligand. In addition, the results suggest that the pyridinic ring must play an active role in the interaction with the receptor site. This interaction with the protonated pyridinic nitrogen can involve a cation-pi interaction or a donor hydrogen bond. The amine groups, at different relative positions of the pyridinic nitrogen, can form one or more hydrogen bonds due to the C(4) symmetry of the inner part of the pore in the K(+) channel.  相似文献   

4.
The structural determinants for the voltage-dependent block of ion channels are poorly understood. Here we investigate the voltage-dependent block of wild-type and mutant human ether-a-go-go related gene (HERG) K(+) channels by the antimalarial compound chloroquine. The block of wild-type HERG channels expressed in Xenopus oocytes was enhanced as the membrane potential was progressively depolarized. The IC(50) was 8.4 +/- 0.9 microm when assessed during 4-s voltage clamp pulses to 0 mV. Chloroquine also slowed the apparent rate of HERG deactivation, reflecting the inability of drug-bound channels to close. Mutation to alanine of aromatic residues (Tyr-652 or Phe-656) located in the S6 domain of HERG greatly reduced the potency of channel block by chloroquine (IC(50) > 1 mm at 0 mV). However, mutation of Tyr-652 also altered the voltage dependence of the block. In contrast to wild-type HERG, block of Y652A HERG channels was diminished by progressive membrane depolarization, and complete relief from block was observed at +40 mV. HERG channel block was voltage-independent when the hydroxyl group of Tyr-652 was removed by mutating the residue to Phe. Together these findings indicate a critical role for Tyr-652 in voltage-dependent block of HERG channels. Molecular modeling was used to define energy-minimized dockings of chloroquine to the central cavity of HERG. Our experimental findings and modeling suggest that chloroquine preferentially blocks open HERG channels by cation-pi and pi-stacking interactions with Tyr-652 and Phe-656 of multiple subunits.  相似文献   

5.
Ca(2+)-dependent inactivation (CDI) of L-type Ca(2+) channels plays a critical role in controlling Ca(2+) entry and downstream signal transduction in excitable cells. Ca(2+)-insensitive forms of calmodulin (CaM) act as dominant negatives to prevent CDI, suggesting that CaM acts as a resident Ca(2+) sensor. However, it is not known how the Ca(2+) sensor is constitutively tethered. We have found that the tethering of Ca(2+)-insensitive CaM was localized to the C-terminal tail of alpha(1C), close to the CDI effector motif, and that it depended on nanomolar Ca(2+) concentrations, likely attained in quiescent cells. Two stretches of amino acids were found to support the tethering and to contain putative CaM-binding sequences close to or overlapping residues previously shown to affect CDI and Ca(2+)-independent inactivation. Synthetic peptides containing these sequences displayed differences in CaM-binding properties, both in affinity and Ca(2+) dependence, leading us to propose a novel mechanism for CDI. In contrast to a traditional disinhibitory scenario, we suggest that apoCaM is tethered at two sites and signals actively to slow inactivation. When the C-terminal lobe of CaM binds to the nearby CaM effector sequence (IQ motif), the braking effect is relieved, and CDI is accelerated.  相似文献   

6.
M. Piñeros  M. Tester 《Planta》1995,195(4):478-488
A new mechanism for calcium flux in wheat (Triticum aestivum L.) root cells has been characterized. Membrane vesicles were enriched in plasma membrane using aqueous-polymer two-phase partitioning and incorporated into artificial lipid bilayers, allowing characterization of single channels under voltage-clamp conditions. Membrane marker activities showed 74% and 83% purity in plasma membrane when expressed in terms of membrane area and activity, respectively. Since membrane vesicles obtained by aqueous-polymer two-phase partitioning yield a population of membrane vesicles of regular orientation, and vesicle fusion into planar lipid bilayers occurs in a defined manner, the orientation of the channel upon vesicle incorporation could be determined. Thus ionic activities and potentials could be controlled appropriately on what we propose to be the cytosolic (trans) and extracellular (cis) faces of the channel. The unitary conductance in symmetrical 1 mM CaCl2 was 27±0.4 (pS). The correlation between the theoretical and observed reversal potentials in asymmetrical conditions showed that the channel was highly selective for Ca2+ over Cl. Experiments simulating physiological ionic conditions showed a PCa 2+/PK + of 17–26, decreasing in this range as the extracellular CaCl2 concentration increased from 0.1 to 1 mM. The channel was also permeable to the essential nutrient ions, Mg2+ and Mn2+. The open probability of the channel was strongly dependent on the membrane potential. Inactivation with time was observed at more negative membrane potentials, and was immediately reversed as soon as the membrane potential was decreased. At membrane potentials more negative than -130mV, the channel remained mainly in the closed state, suggesting that in vivo the channel would remain largely closed and would open only upon membrane depolarization. The channel was blocked by micromolar concentrations of extracellular verapamil and trivalent cations, Al3+ being the most effective of those tested. Exposure of the cytosolic and extracellular sides of the channel to inositol 1,4,5-trisphosphate had no effect on the channel activity. We suggest a plasma-membrane origin for the channel as shown by biochemical and electrophysiological evidence, and discuss possible physiological roles of this channel, both in Ca2+ uptake into roots and in signal transduction.Abbreviations IP3 1,4,5-trisphosphate - PM plasma membrane We wish to thank Dr. Christa Niemietz, Dr. Robert Reid and Prof. Andrew Smith for valuable discussions. This work was supported by the Australian Research Council and an OPRS award to M.P.  相似文献   

7.
Ca2+/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca2+ channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation in distinctive ways, depending on which hypothesis holds true. Thus, we systematically mutate the activation gate, formed by all S6 segments within CaV1.3. These channels feature robust baseline CDI, and the resulting mutant library exhibits significant diversity of activation, CDI, and VDI. For CDI, a clear and previously unreported pattern emerges: activation-enhancing mutations proportionately weaken inactivation. This outcome substantiates an allosteric CDI mechanism. For VDI, the data implicate a “hinged lid–shield” mechanism, similar to a hinged-lid process, with a previously unrecognized feature. Namely, we detect a “shield” in CaV1.3 channels that is specialized to repel lid closure. These findings reveal long-sought downstream mechanisms of inactivation and may furnish a framework for the understanding of Ca2+ channelopathies involving S6 mutations.  相似文献   

8.
In voltage-dependent ion channels, the gating of the channels is determined by the movement of the voltage sensor. This movement reflects the rearrangement of the protein in response to a voltage stimulus, and it can be thought of as a net displacement of elementary charges (e0) through the membrane (z: effective number of elementary charges). In this paper, we measured z in Shaker IR (inactivation removed) K+ channels, neuronal alpha 1E and alpha 1A, and cardiac alpha 1C Ca2+ channels using two methods: (a) limiting slope analysis of the conductance-voltage relationship and (b) variance analysis, to evaluate the number of active channels in a patch, combined with the measurement of charge movement in the same patch. We found that in Shaker IR K+ channels the two methods agreed with a z congruent to 13. This suggests that all the channels that gate can open and that all the measured charge is coupled to pore opening in a strictly sequential kinetic model. For all Ca2+ channels the limiting slope method gave consistent results regardless of the presence or type of beta subunit tested (z = 8.6). However, as seen with alpha 1E, the variance analysis gave different results depending on the beta subunit used. alpha 1E and alpha 1E beta 1a gave higher z values (z = 14.77 and z = 15.13 respectively) than alpha 1E beta 2a (z = 9.50, which is similar to the limiting slope results). Both the beta 1a and beta 2a subunits, coexpressed with alpha 1E Ca2+ channels facilitated channel opening by shifting the activation curve to more negative potentials, but only the beta 2a subunit increased the maximum open probability. The higher z using variance analysis in alpha 1E and alpha 1E beta 1a can be explained by a set of charges not coupled to pore opening. This set of charges moves in transitions leading to nulls thus not contributing to the ionic current fluctuations but eliciting gating currents. Coexpression of the beta 2a subunit would minimize the fraction of nulls leading to the correct estimation of the number of channels and z.  相似文献   

9.
Voltage-gated Ca2+ channels allow the influx of Ca2+ ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca2+ transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca2+ channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca2+ channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca2+ channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca2+ channels.  相似文献   

10.
A classical voltage-sensitive channel is tension sensitive—the kinetics of Shaker and S3–S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982–2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193–208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically—normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize, therefore, that stretch-induced bilayer decompression facilitates an in-plane expansion of the protein in both activation and inactivation. Dynamic structural models of this class of channels will need to take into account the inherent mechanosensitivity of voltage-dependent gating.  相似文献   

11.
V. A. Bouryi 《Neurophysiology》1998,30(4-5):301-304
Barium currents through ion channels formed by α1-subunit of L-type Ca2+ channel (I α1) were recorded from cultured chinese hamster ovary (CHO) cells. The cells were stably transfected with either a cardiac or a smooth muscle (SM) variant of α1-subunit. TheI α1 in both cases exhibited similar fast voltage-dependent activation kinetics and slow apparent inactivation kinetics. With 10 mM Ba2+ in the bath solution,I α1 was activated at potentials more positive than −40 mV, peaked between 0 and +10 mV, and reversed at about +50 mV. In addition to slow apparent inactivation of inward current, both subunits provided an extremely slow voltage-dependent inactivation at potentials more positive than −100 mV, with half-maximum inactivation at −43.4 mV for cardiac and −41.4 mV for SM α1-subunits. The onset of inactivation as well as recovery from this process were within a time range of minutes. The voltage dependence of steady-state inactivation could be fitted by the sum of two Boltzmann's equations with slope factors of about 12 mV and 5 mV. A less sloped component has its midpoints at −75.6 and −63.7 mV, and a steeper component has its midpoints at −42.8 and −37.7 mV for cardiac and SM α1-subunits, respectively. Relative contribution of the steeper component was higher in both subunits (0.86 and 0.66 for cardiac and SM subunits, respectively). For comparison, the inactivation curves for 5-sec-long conditioning prepulses could be fitted by single Boltzmann's distribution with a 20 mV more positive midpoint and a slope factor of about 13 mV. In contrast to the steady-state inactivation curves, they showed considerable overlap with the steady-state activation curve. Our results reflect functional consequences of known sequence differences between α1-subunits of the cardiac and SM L-type Ca2+ channels and could be used in structural modeling of Ca2+ channel gating. In addition, they show that depolarization-induced window current has a transient nature and decays with the development of extremely slow inactivation. This is the first demonstration that slow inactivation of the L-type Ca2+ channel is an intrinsic property of its α1-subunits.  相似文献   

12.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

13.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

14.
15.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

16.
The verapamil-sensitive Ca2+ channel in the synaptosomal plasma membrane is investigated. Verapamil is without effect on Ca2+ uptake or steady-state content in synaptosomes with a polarized plasma membrane, but completely inhibits the additional Ca2+ uptake following plasma-membrane depolarization by high [K+], by veratridine plus ouabain or by high concentrations of the permeant cation tetraphenylphosphonium. Verapamil-insensitive Ca2+ influx and steady-state content are identical in polarized and depolarized synaptosomes, even though the Na+ electrochemical potential is greatly decreased in the latter, indicating that Na+/Ca2+ exchange is not a significant mechanism for Ca2+ efflux under these conditions. A transient Na+-dependent Ca2+ efflux can only be observed on addition of Na+ to Na+-depleted depolarized synaptosomes. While 0.2 mM verapamil decreases the ate of 86Rb+ efflux and 22Na+ entry during depolarization induced by veratridine plus ouabain, the final steady-state Na+ accumulation is not inhibited. Ca2+ efflux from synaptosomes following mitochondrial depolarization does not occur by a verapamil-sensitive pathway.  相似文献   

17.
We investigated a possible role of nifedipine-insensitive high voltage-activated (NI-HVA) Ca2+ channels in arterial diameter regulation in the semi-terminal branches of rabbit mesenteric artery (RMA). From these branches, NI-HVA Ca2+ currents showing almost identical properties to those previously identified in a similar region of guinea-pig [Circulation Research 1999;85:596-605] were recorded with whole-cell patch clamp recording. With video-microscopic measurement, the diameter of RMA segments perfused intraluminally at a constant rate (2-6 mL/h; 269 +/- 9 micro m, n = 27) decreased by 50-60% by raising the external K+ concentration ([K+]o) to 75 mM, a substantial part of which remained after addition of 1-10 micro M nifedipine (44 +/- 5% of initial diameter, n = 27). This nifedipine-insensitive diameter decrease (NI-DD) appeared to consist of initial transient and subsequent tonic phases (this separation was, however, not always clear), was resistant to tetrodotoxin, and was completely abolished in Ca2+-free or 100 micro M Cd2+-containing bath solutions. The magnitude of NI-DD increased depending on [K+]o with a threshold concentration of 20-40 mM. Raising the external Ca2+ concentration dose-dependently increased the magnitude of NI-DD, the extent being more prominent in the late tonic phase. Combined application of caffeine (10 mM) with ryanodine (3 micro M) produced a large transient NI-DD, which strongly attenuated the NI-DD evoked by a subsequent elevation in [K+]o. Using the fura-2 spectrofluorimetric Ca2+ imaging technique, a nifedipine-insensitive [Ca2+]i increase showing similar [K+]o-dependence and Cd2+ sensitivity to NI-DD was observed. These properties of NI-DD accord with those of NI-HVA Ca2+ channels, thus suggesting their contribution to small arterial diameter regulation in RMA.  相似文献   

18.
Although the physiological relevance of mitochondrial Ca2+ homeostasis is widely accepted, no information is yet available on the molecular identity of the proteins involved in this process. Here we analyzed the role of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane in the transmission of Ca2+ signals between the ER and mitochondria by measuring cytosolic and organelle [Ca2+] with targeted aequorins and Ca2+-sensitive GFPs. In HeLa cells and skeletal myotubes, the transient expression of VDAC enhanced the amplitude of the agonist-dependent increases in mitochondrial matrix Ca2+ concentration by allowing the fast diffusion of Ca2+ from ER release sites to the inner mitochondrial membrane. Indeed, high speed imaging of mitochondrial and cytosolic [Ca2+] changes showed that the delay between the rises occurring in the two compartments is significantly shorter in VDAC-overexpressing cells. As to the functional consequences, VDAC-overexpressing cells are more susceptible to ceramide-induced cell death, thus confirming that mitochondrial Ca2+ uptake plays a key role in the process of apoptosis. These results reveal a novel function for the widely expressed VDAC channel, identifying it as a molecular component of the routes for Ca2+ transport across the mitochondrial membranes.  相似文献   

19.
Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.  相似文献   

20.
The beta subunits of voltage-dependent calcium channels are known to modify calcium channel currents through pore-forming alpha1 subunits. Of the four beta subunits reported to date, the beta3 subunit is highly expressed in smooth muscle cells and is thought to consist of L-type calcium channels. To determine the role of the beta3 subunit in the voltage-dependent calcium channels of the cardiovascular system in situ, we performed a series of experiments in beta3-null mice. Western blot analysis indicated a significant reduction in expression of the alpha1 subunit in the plasma membrane of beta3-null mice. Dihydropyridine binding experiments also revealed a significant decrease in the calcium channel population in the aorta. Electrophysiological analyses indicated a 30% reduction in Ca2+ channel current density, a slower inactivation rate, and a decreased dihydropyridine-sensitive current in beta3-null mice. The reductions in the peak current density and inactivation rate were reproduced in vitro by co-expression of the calcium channel subunits in Chinese hamster ovary cells. Despite the reduced channel population, beta3-null mice showed normal blood pressure, whereas a significant reduction in dihydropyridine responsiveness was observed. A high salt diet significantly elevated blood pressure only in the beta3-null mice and resulted in hypertrophic changes in the aortic smooth muscle layer and cardiac enlargement. In conclusion, this study demonstrates the involvement and importance of the beta3 subunit of voltage-dependent calcium channels in the cardiovascular system and in regulating channel populations and channel properties in vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号