首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG) potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus. Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C point mutation in the S4-S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET) analysis of fluorophore-tagged proteins under total internal reflection fluorescence (TIRF) conditions revealed a substantial level of FRET between the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment with the gating machinery, likely at the level of the S4-S5 linker.  相似文献   

2.
We used Xenopus oocytes co-expressing thyrotropin-releasing hormone (TRH) receptors and human ether-a-go-go-related gene (HERG) K+ channel variants carrying different amino-terminal modifications to check the relevance of the proximal domain for hormonal regulation of the channel. Deletion of the whole proximal domain (Delta 138-373) eliminates TRH-induced modifications in activation and deactivation parameters. TRH effects on activation are also suppressed with channels lacking the second half of the proximal domain or only residues 326-373. However, normal responses to TRH are obtained with Delta 346-373 channels. Thus, whereas residues 326-345 are required for the hormonal modulation of HERG activation, different proximal domain sequences contribute to set HERG gating characteristics and its regulation by TRH.  相似文献   

3.
Ion channels are dynamic multimeric proteins that often undergo multiple unsynchronized structural movements as they switch between their open and closed states. Such structural changes are difficult to measure within the context of a native lipid bilayer and have often been monitored via macroscopic changes in Förster resonance energy transfer (FRET) between probes attached to different parts of the protein. However, the resolution of this approach is limited by ensemble averaging of structurally heterogeneous subpopulations. These problems can be overcome by measurement of FRET in single molecules, but this presents many challenges, in particular the ability to control labeling of subunits within a multimeric protein with acceptor and donor fluorophores, as well as the requirement to image large numbers of individual molecules in a membrane environment. To address these challenges, we randomly labeled tetrameric KirBac1.1 potassium channels, reconstituted them into lipid nanodiscs, and performed single-molecule FRET confocal microscopy with alternating-laser excitation as the channels diffused in solution. These solution-based single-molecule FRET measurements of a multimeric ion channel in a lipid bilayer have allowed us to probe the structural changes that occur upon channel activation and inhibition. Our results provide direct evidence of the twist-to-shrink movement of the helix bundle crossing during channel gating and demonstrate how this method might be applied to real-time structural studies of ion channel gating.  相似文献   

4.
Gating kinetics of human ether-a-go-go (eag)-related gene (HERG) K+ channel expressed in Xenopus oocytes was studied using non-inactivating channel variants carrying different structural modifications in the amino terminus. A kinetics model was elaborated to describe the behavior of full-length channels, that includes at least three open states besides the three closed states previously proposed. Deletion of the HERG-specific proximal domain (HERG D138-373) accelerated all individual forward transitions between closed states. Whereas relatively large amplitude depolarizations were required to drive full-length HERG channels to more distal open states, these were reached more easily in channels without proximal domain. Alteration of the initial eag/PAS domain by introduction of a short amino-acid sequence at the beginning of the amino terminus did not alter transitions between closed states, but prevented the channels from reaching the farthest open states that determine slower deactivation rates. This indicates that the presence of specific amino-terminal structures can be correlated with the occurrence of distinctive molecular transitions. It also demonstrates that both proximal and eag/PAS domains in the amino terminus contribute to set the gating characteristics of HERG channels.  相似文献   

5.
The native cysteine residues of green fluorescent protein (GFP) at positions 48 and 70 were replaced by non-thiolic amino acids, and new cysteine sites were introduced at specific, surface positions. Based on molecular modeling of the GFP structure, the sites chosen for mutagenesis to Cys were glutamic acid at position 6 and isoleucine at position 229. These new, unique cysteine sites provided reactive thiol groups suitable for site-specific chemical modification by eosin-based fluorescence labels. The new constructs were designed to serve as the basis of proof of principle for fluorescence resonance energy transfer (FRET) using an enzyme-activated (trypsin) intervening sequence between native and chemically conjugated fluorophores. These eosin moieties provided chemical FRET partners for the native GFP chromophore. On excitation, these GFP-eosin constructs exhibited strong intramolecular FRET, with quenching of the native GFP (511 nm) fluorophore emission and emission around 540 nm, corresponding to eosin. GFP mutants engineered with trypsin-sensitive sequences close to the eosin site, so that on trypsinolysis FRET was destroyed, the emission wavelength switching from that of the chemical FRET partner back to that of the native GFP fluorophore, providing efficient, ratio-based detection. This protein engineering provides the basis for novel bioprobes for enzymatic triggering using intramolecular FRET between GFP and carefully sited chemical labels.  相似文献   

6.
For ligand-gated ion channels, the binding of a ligand to an intracellular or extracellular domain generates changes in transmembrane pore-forming helices, which alters ion flow. The molecular mechanism for this allostery, however, remains unknown. Here we explore the structure and conformational rearrangements of the C-terminal gating ring of the cyclic nucleotide-gated channel CNGA1 during activation by cyclic nucleotides with patch-clamp fluorometry. By monitoring fluorescent resonance energy transfer (FRET) between membrane-resident quenchers and fluorophores attached to the channel, we detected no movement orthogonal to the membrane during channel activation. By monitoring FRET between fluorophores within the C-terminal region, we determined that the C-terminal end of the C-linker and the end of the C-helix move apart when channels open. We conclude that during channel activation, a portion of the gating ring moves parallel to the plasma membrane, hinging toward the central axis of the channel.  相似文献   

7.
Outward movement of the voltage sensor is coupled to activation in voltage-gated ion channels; however, the precise mechanism and structural basis of this gating event are poorly understood. Potential insight into the coupling mechanism was provided by our previous finding that mutation to Lys of a single residue (Asp(540)) located in the S4-S5 linker endowed HERG (human ether-a-go-go-related gene) K(+) channels with the unusual ability to open in response to membrane depolarization and hyperpolarization in a voltage-dependent manner. We hypothesized that the unusual hyperpolarization-induced gating occurred through an interaction between Lys(540) and the C-terminal end of the S6 domain, the region proposed to form the activation gate. Therefore, we mutated six residues located in this region of S6 (Ile(662)-Tyr(667)) to Ala in D540K HERG channels. Mutation of Arg(665), but not the other five residues, prevented hyperpolarization-dependent reopening of D540K HERG channels. Mutation of Arg(665) to Gln or Asp also prevented reopening. In addition, D540R and D540K/R665K HERG reopened in response to hyperpolarization. Together these findings suggest that a single residue (Arg(665)) in the S6 domain interacts with Lys(540) by electrostatic repulsion to couple voltage sensing to hyperpolarization-dependent opening of D540K HERG K(+) channels. Moreover, our findings suggest that the C-terminal ends of S4 and S6 are in close proximity at hyperpolarized membrane potentials.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) using fluorescent protein variants are used for studying the associations and biomolecular motions of macromolecules inside the cell. Intramolecular FRET utilizing fluorescent chemical labels has been applied in nucleic acid chemistry for detection of specific sequence. However, the biotechnological applications of intramolecular FRET in fluorescent proteins have not been exploited. This study demonstrates the intramolecular FRET between fluorescent protein and conjugated chemical label whereby FRET occurs from inside to outside and vice versa for fluorescent protein. The fluorescent protein is modified for the attachment of chemical fluorophores and the novel FRET pairs created by conjugation are MDCC (435/475)-Citrine (516/529) and Citrine-Alexa fluor (568/603). These protein-label pairs exhibited strong intramolecular FRET and the energy transfer efficiency was determined based on the time evolution of the ratio of emission intensities of labeled and unlabeled proteins. The efficiency was found to be 0.79 and 0.89 for MDCC-Citrine and 0.24 and 0.65 for Citrine-Alexa Fluor pairs when the label is conjugated at different sites in the protein. Fo?rster distance and the average distance between the fluorophores were also determined. The bidirectional approach described here can provide new insights into designing FRET-based sensors.  相似文献   

9.
Bera S  Vora AC  Chiu R  Heyduk T  Grandgenett DP 《Biochemistry》2005,44(46):15106-15114
The integration of retroviral DNA by the viral integrase (IN) into the host genome occurs via assembled preintegration complexes (PIC). We investigated this assembly process using purified IN and viral DNA oligodeoxynucleotide (ODN) substrates (93 bp in length) that were labeled with donor (Cy3) and acceptor fluorophores (Cy5). The fluorophores were attached to the 5' 2 bp overhangs of the terminal attachment (att) sites recognized by IN. Addition of IN to the assay mixture containing the fluorophore-labeled ODN resulted in synaptic complex formation at 14 degrees C with significant fluorescence resonance energy transfer (FRET) occurring between the fluorophores in close juxtaposition (from approximately 15 to 100 A). Subsequent integration assays at 37 degrees C with the same ODN (32P-labeled) demonstrated a direct association of a significant FRET signal with concerted insertion of the two ODNs into the circular DNA target, here termed full-site integration. FRET measurements (deltaF) show that IN binds to a particular set of 3' OH recessed substrates (type I) generating synaptic complexes capable of full-site integration that, as shown previously, exhibit IN mediated protection from DNaseI digestion up to approximately 20 bp from the ODN att ends. In contrast, IN also formed complexes with nonspecific DNA ends and loss-of-function att end substrates (type II) that had significantly lower deltaF values and were not capable of full-site integration, and lacked the DNaseI protection properties. The type II category may exemplify what is commonly understood as "nonspecific" binding by IN to DNA ends. Two IN mutants that exhibited little or no integration activity gave rise to the lower deltaF signals. Our FRET analysis provided the first direct physical evidence that IN forms synaptic complexes with two DNA att sites in vitro, yielding a complex that exhibits properties comparable to that of the PIC.  相似文献   

10.
Nonstructural protein 5A (NS5A) is essential for hepatitis C virus (HCV) replication and assembly and is a critical drug target. Biochemical data suggest large parts of NS5A are unfolded as an isolated protein, but little is known about its folded state in the cell. We used fluorescence resonance energy transfer (FRET) to probe whether or not different regions of NS5A are in close proximity within the cell. Twenty-three separate reporter constructs were created by inserting one or more fluorophores into different positions throughout the three domains of NS5A. FRET efficiency was maximal when donor and acceptor fluorophores were positioned next to each other but also could be observed when the two fluorophores flanked NS5A domain 1 or domain 3. Informatic and biochemical analysis suggests that large portions of the carboxy terminus of NS5A are in an unfolded and disordered state. Quercetin, a natural product known to disrupt NS5A function in cells, specifically disrupted a conformationally specific domain 3 FRET signal. Intermolecular FRET indicated that the NS5A amino termini, but not other regions, are in close proximity in multimeric complexes. Overall, this assay provides a new window on the intracellular conformation(s) of NS5A and how the conformation changes in response to cellular and viral components of the replication and assembly complex as well as antiviral drugs.  相似文献   

11.
HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolarization of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-dependent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is implicated in the unusual properties of HERG gating: does the voltage sensor move slowly to account for slow activation and deactivation, or could the voltage sensor move rapidly to account for the rapid kinetics and intrinsic voltage dependence of inactivation? To probe voltage sensor movement, we used a fluorescence technique to examine conformational changes near the positively charged S4 region. Fluorescent probes attached to three different residues on the NH2-terminal end of the S4 region (E518C, E519C, and L520C) reported both fast and slow voltage-dependent changes in fluorescence. The slow changes in fluorescence correlated strongly with activation gating, suggesting that the slow activation gating of HERG results from slow voltage sensor movement. The fast changes in fluorescence showed voltage dependence and kinetics similar to inactivation gating, though these fluorescence signals were not affected by external tetraethylammonium blockade or mutations that alter inactivation. A working model with two types of voltage sensor movement is proposed as a framework for understanding HERG channel gating and the fluorescence signals.  相似文献   

12.
To determine the number of drug binding sites that exist on the multidrug transporter, P-glycoprotein, we used azidopine, a dihydropyridine photoaffinity compound that reverses multidrug resistance and labels P-glycoprotein. Azidopine labels P-glycoprotein in two distinct locations: one labeled site is within the amino half of P-glycoprotein between amino acid residues 198 and 440, and the other site is within the carboxy half of the protein. Vinblastine is a cytotoxic drug that is used in cancer chemotherapy and is a substrate for transport by P-glycoprotein. We found that vinblastine inhibits azidopine labeling to approximately the same extent at each labeled site on P-glycoprotein. Because several studies have shown that amino acid residue 185 of P-glycoprotein plays a critical role in some aspects of drug binding and transport, we also studied the effect that amino acid residue 185 has on azidopine labeling. These studies show that azidopine labels both sites equivalently in both wild-type (G185) and mutant (V185) P-glycoproteins. We conclude from our results that the two halves of P-glycoprotein approach each other to form a single binding site for these drugs.  相似文献   

13.
Fluorescence resonance energy transfer (FRET) spectroscopy has been used to determine distances between probes attached to the most reactive sulfhydryl (SH1) group on individual myosin "heads." We measured intramolecular and intermolecular interhead distances as well as the distance between one head of heavy meromyosin (HMM) mixed with subfragment-1 (S1) heads attached to F-actin under rigor conditions. The SH1 cysteine was specifically labeled with either a donor (5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid) or an acceptor probe (5-iodoacetamidofluorescein). In free solution, the distance between these probes was too large to allow significant FRET, but in the rigor complex with F-actin, intermolecular interhead distances between S1 molecules, HMM molecules, or S1 and HMM were determined to be 6.0-6.3 nm. The radial coordinate of the labels relative to F-actin was 5.0-6.4 nm. However, the intramolecular interhead distance in HMMs in which the two heads were labeled with D and A probes was estimated to be larger. The binding affinity of the second head of HMM(D/A) to F-actin may be reduced because of heterogeneous modification of the SH1 groups, such that the probability of single-head binding is increased.  相似文献   

14.
Covalent modification is an important strategy for introducing new functions into proteins. As engineered proteins become more sophisticated, it is often desirable to introduce multiple, modifications involving several different functionalities in a site-specific manner. Such orthogonal labeling schemes require independent labeling of differentially reactive nucleophilic amino acid side chains. We have developed two protein-mediated protection schemes that permit independent labeling of multiple thiols. These schemes exploit metal coordination or disulfide bond formation to reversibly protect cysteines in a Cys(2)His(2) zinc finger domain. We constructed a variety of N- and C-terminal fusions of these domains with maltose-binding protein, which were labeled with two or three different fluorophores. Multiple modifications were made by reacting an unprotected cysteine in MBP first, deprotecting the zinc finger, and then reacting the zinc finger cysteines. The fusion proteins were orthogonally labeled with two different fluorophores, which exhibited intramolecular fluorescene resonance energy transfer (FRET). These conjugates showed up to a threefold ratiometric change in emission intensities in response to maltose binding. We also demonstrated that the metal- and redox-mediated protection methods can be combined to produce triple independent modifications, and prepared a protein labeled with three different fluorophores that exhibited a FRET relay. Finally, labeled glucose-binding protein was covalently patterned on glass slides using thiol-mediated immobilization chemistries. Together, these experiments demonstrated that reversible thiol protection schemes provide a rapid, straightforward method for producing multiple, site-specific modifications.  相似文献   

15.
HERG (Kv11.1, KCNH2) is a voltage-gated potassium channel with unique gating characteristics. HERG has fast voltage-dependent inactivation, relatively slow deactivation, and fast recovery from inactivation. This combination of gating kinetics makes study of HERG difficult without using mathematical models. Several HERG models have been developed, with fundamentally different organization. HERG is the molecular basis of IKr, which plays a critical role in repolarization. We programmed and compared five distinct HERG models. HERG gating cannot be adequately replicated using Hodgkin-Huxley type formulation. Using Markov models, a five-state model is required with three closed, one open, and one inactivated state, and a voltage-independent step between some of the closed states. A fundamental difference between models is the presence/absence of a transition directly from the proximal closed state to the inactivated state. The only models that effectively reproduce HERG data have no direct closed-inactivated transition, or have a closed-inactivated transition that is effectively zero compared to the closed-open transition, rendering the closed-inactivation transition superfluous. Our single-channel model demonstrates that channels can inactivate without conducting with a flickering or bursting open-state. The various models have qualitative and quantitative differences that are critical to accurate predictions of HERG behavior during repolarization, tachycardia, and premature depolarizations.  相似文献   

16.
Peptide toxins with disulfide-stabilized structures have been used as molecular calipers to probe the outer vestibule structure of K channels. We want to apply this approach to the human ether-a-go-go-related gene (HERG) channel, whose outer vestibule is unique in structure and function among voltage-gated K channels. Our focus here is BeKm-1, a HERG-specific peptide toxin that can suppress HERG in the low nM concentration range. Although BeKm-1 shares the three-dimensional scaffold with the well-studied charybdotoxin, the two use different mechanisms in suppressing currents through their target K channels. BeKm-1 binds near, but not inside, the HERG pore, and it is possible that BeKm-1-bound HERG channels can conduct currents although with markedly altered voltage-dependence and kinetics of gating. BeKm-1 and ErgTx1 differ in three-dimensional scaffold, but the two share mechanism of action and have overlapping binding sites on the HERG channel. For both, residues in the middle of the S5-P linker (the putative 583-597 helix) and residues at the pore entrance are critical for binding, although specific contact points vary between the two. Toxin foot printing using BeKm-1 and ErgTx1 will likely provide complementary information about the unique outer vestibule structure of the HERG channel.  相似文献   

17.
The human ether-a-go-go-related gene (HERG) product forms the pore-forming subunit of the delayed rectifier K(+) channel in the heart. Unlike the cardiac isoform, the erg K(+) channels in native smooth muscle demonstrate gating properties consistent with a role in maintaining resting potential. We have cloned the smooth muscle isoform of HERG, denoted as erg1-sm, from human and rabbit colon. erg1-sm is truncated by 101 amino acids in the C terminus due to a single nucleotide deletion in the 14th exon. Sequence alignment against HERG showed a substitution of alanine for valine in the S4 domain. When expressed in Xenopus oocytes, erg1-sm currents had much faster activation and deactivation kinetics compared with HERG. Step depolarization positive to -20 mV consistently produced a transient outward component. The threshold for activation of erg1-sm was -60 mV and steady-state conductance was approximately 10-fold greater than HERG near the resting potential of smooth muscle. Site-directed mutagenesis of alanine to valine in the S4 region of erg1-sm converted many of the properties to that of the cardiac HERG, including shifts in the voltage dependence of activation and slowing of deactivation. These studies define the functional role of a novel isoform of the ether-a-go-go-related gene K(+) channel in smooth muscle.  相似文献   

18.
Human ether-a-go-go (HERG) channels participate in the repolarization of the cardiac action potential. Loss of function mutations of HERG lead to delayed cardiac repolarization reflected by prolonged QT interval. HERG channels are regulated through a signaling cascade involving phosphatidylinositol 3 (PI3) kinase. Downstream targets of PI3 kinase include the serum and glucocorticoid inducible kinase (SGK) and protein kinase B (PKB) isoforms. The present study has been performed to explore whether SGK1 and SGK3 participate in the regulation of HERG channel activity. HERG was expressed in Xenopus oocytes with or without additional expression of SGK1 or SGK3. Chemiluminescence was employed to determine HERG plasma membrane protein abundance. Coexpression of SGK3 but not of SGK1 in Xenopus oocytes resulted in an increase of steady state current (I(HERG)) and enhanced cell membrane protein abundance without affecting gating kinetics of the channel. Replacement of serine by alanine at the two SGK consensus sites decreased I(HERG) but neither mutation abolished the stimulating effect of SGK3. In conclusion, SGK3 participates in the regulation of HERG by increasing HERG protein abundance in the plasma membrane and may thus modify the duration of the cardiac action potential.  相似文献   

19.
Meng F  Suchyna TM  Sachs F 《The FEBS journal》2008,275(12):3072-3087
To measure mechanical stress in real time, we designed a fluorescence resonance energy transfer (FRET) cassette, denoted stFRET, which could be inserted into structural protein hosts. The probe was composed of a green fluorescence protein pair, Cerulean and Venus, linked with a stable alpha-helix. We measured the FRET efficiency of the free cassette protein as a function of the length of the linker, the angles of the fluorophores, temperature and urea denaturation, and protease treatment. The linking helix was stable to 80 degrees C, unfolded in 8 m urea, and rapidly digested by proteases, but in all cases the fluorophores were unaffected. We modified the alpha-helix linker by adding and subtracting residues to vary the angles and distance between the donor and acceptor, and assuming that the cassette was a rigid body, we calculated its geometry. We tested the strain sensitivity of stFRET by linking both ends to a rubber sheet subjected to equibiaxial stretch. FRET decreased proportionally to the substrate strain. The naked cassette expressed well in human embryonic kidney-293 cells and, surprisingly, was concentrated in the nucleus. However, when the cassette was located into host proteins such alpha-actinin, nonerythrocyte spectrin and filamin A, the labeled hosts expressed well and distributed normally in cell lines such as 3T3, where they were stressed at the leading edge of migrating cells and relaxed at the trailing edge. When collagen-19 was labeled near its middle with stFRET, it expressed well in Caenorhabditis elegans, distributing similarly to hosts labeled with a terminal green fluorescent protein, and the worms behaved normally.  相似文献   

20.
Gating kinetics and underlying thermodynamic properties of human ether-a-go-go-related gene (HERG) K+ channels expressed in Xenopus oocytes were studied using protocols able to yield true steady-state kinetic parameters. Channel mutants lacking the initial 16 residues of the amino terminus before the conserved eag/PAS region showed significant positive shifts in activation voltage dependence associated with a reduction of zg values and a less negative ΔGo, indicating a deletion-induced displacement of the equilibrium toward the closed state. Conversely, a negative shift and an increased ΔGo, indicative of closed-state destabilization, were observed in channels lacking the amino-terminal proximal domain. Furthermore, accelerated activation and deactivation kinetics were observed in these constructs when differences in driving force were considered, suggesting that the presence of distal and proximal amino-terminal segments contributes in wild-type channels to specific chemical interactions that raise the energy barrier for activation. Steady-state characteristics of some single point mutants in the intracellular loop linking S4 and S5 helices revealed a striking parallelism between the effects of these mutations and those of the amino-terminal modifications. Our data indicate that in addition to the recognized influence of the initial amino-terminus region on HERG deactivation, this cytoplasmic region also affects activation behavior. The data also suggest that not only a slow movement of the voltage sensor itself but also delaying its functional coupling to the activation gate by some cytoplasmic structures possibly acting on the S4-S5 loop may contribute to the atypically slow gating of HERG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号