首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of seed coat removal on the synthesis of α-amylase isoenzymes in wheat was investigated. The immature wheat endosperm-aleurone (seed coat and embryo detached) produced considerably less α-amylase activity than immature whole or de-embryonated wheat kernels, when incubated under identical conditions of 18.5 C and 99% humidity, in the presence or absence of gibberellic acid (GA3). The incubated endosperm-aleurone also exhibited unique α-amylase isoenzyme composition when compared to the isoenzyme compositions of incubated whole and de-embryonated immature and mature wheat kernels both in the presence or absence of GA3. Subsequent studies indicated that the seed coat may contain factor(s) required for normal α-amylase isoenzyme synthesis.  相似文献   

2.
Stimulation of monophenolase activity was observed when de-embryonated prewashed half-seeds of wheat were imbibed in a solution of gibberellic acid (GA3, 10t?5 M). Crude extracts, prepared from GA3-treated half-seeds, showed ca a two-fold increase in monophenolase activity over the controls at pH 6.6, while a dramatic rise in enzyme activity (seven- to nine-fold) was observed at pH 9.0. The partially purified (NH4)2SO4 fraction precipitate (30–50% saturation) also showed enhancement of enzyme activity at pH 9.0 in GA3-treated half-seeds, while in controls, there was negligible activity at this pH. Administration of five amino acid analogues (1 mM each) to half-seeds showed no significant inhibition of GA3-stimulated monophenolase activity, but proved very effective in decreasing (86% inhibition) the GA3-induced amylase activity. This indicated that the hormone-regulated monophenolase activity was not dependent on de novo protein synthesis. Treatment of half-seeds with GA3 modified the monophenolase and altered the electrophoretic pattern. The enzyme was relatively thermostable at 55° and the pH optimum was shifted from pH 7.0 to 9.0. In addition, the GA3-treated half-seeds showed relatively high stability of enzyme activity in the presence of (NH4)2S04 ions. These alterations in the GA3-stimulated nomophenolase suggest there is activation of preformed enzyme molecules. The appearance of slow-migrating multiple forms on acrylamide gels, in response to GA3 treatment, is probably due to the association of fast-migrating forms. Such oligomerization could result in a conformational change leading to enzyme activation. This may be an adaptive mechanism so that the enzyme can function with varying temperature, pH and ionic strength during early stages of seed germination.  相似文献   

3.
Stimulation of α-amylase activity was observed in Porteresia coarctata immature seeds (20-day-old) when de-embryonated prewashed half seeds were incubated in media containing gibberellic acid (GA3, 10?5M). No such activity was observed in mature seeds even when GA3 concentration was increased up to five fold. ABA suppressed the GA3 enhanced α-amylase synthesis up to nearly 70% in the immature seeds. Absence of this enzyme activity in mature seeds may be due to high levels of ABA. The immature aleurone showed a 23 kD polypeptide induced by ABA.  相似文献   

4.
The aleurone of RB-3 shrunken-2 (sh2) maize kernels is deficient in α-amylase activity during germination, but exogenous applications of gibberellic acid (GA3) (0.001–10 μm ) induced low levels of activity. The highest activity was measured in the aleurone of kernels treated with 10 μm GA3 (14,600 ± 945 units), but was lower than untreated Starchy (Su) aleurone tissues (35,280 ± 5,010 units). On isoelectric focusing gels, no α-amylase isozymes were detected in the untreated sh2 aleurone using starch zymograms or immunoblots, but the 1.0 and 10 μm mm GA3 treatments induced nearly all the isozymes (eight to ten) present in the Su aleurone. There was a very low level of α-amylase mRNA in the untreated sh2 aleurone, an intermediate level in the 1.0 μm GA3-treated sh2 aleurone, and the highest level in the untreated Su aleurone. On the confocal microscope, the 1.0 μm GA3-treated aleurone cells had enhanced levels of cytoplasmic membranes and RNA compared to untreated sh2 aleurone cells. The 1.0 μm GA3 treatment also induced shoot elongation in the sh2 seedlings. The data demonstrate that the sh2 aleurone is deficient in its function to produce α-amylases, and exogenous GA3 can partially restore cell function in the sh2 kernels.  相似文献   

5.
Multiple forms of monophenolase in wheat half-seeds were separated by molecular sieving on Sephadex G-200. A single molecular form of monophenolase was observed in control, while two multiple forms were present in GA3-treated wheat half-seeds. A high MW (200 000 or above) multiple form (activity peak I) which eluted soon after the void volume was exclusively present in GA3-treated half-seeds. The second activity peak (peak II) was a low MW (45 000) multiple form and its elution profile coincided in control and GA3-treated wheat half-seeds. Both the multiple forms of monophenolase in GA3-treated wheat half-seeds showed a pH optimum at 9.0, while the optimum enzyme activity of the control molecular form (peak II) was at pH 7.0. This indicated that the treatment of wheat half-seeds with GA3 brought about a structural modification in monophenolase. The in vitro addition of trypsin enhanced the control of the molecular form of monophenolase but this treatment failed to alter the activity of multiple forms in GA3-treated half-seeds. This differential response of monophenolase towards trypsin could be ascribed to a conformational change of the enzyme in hormone-treated half-seeds. Brief exposure of the enzyme preparation to urea (6 M) brought about an irreversible activation of monophenolase both in control and GA3-treated wheat half-seeds.  相似文献   

6.
Gibberellic acid (GA3) inhibition of anthocyanin accumulation by carrot cell-suspension cultures was reversed by supplying dihydroquercitin or naringenin to the culture and not by supplying 4-coumaric acid or malonic acid. This suggested that gibberellic acid was inhibiting chalcone synthase, chalcone isomerase, or acetyl CoA carboxylase. Acetyl-CoA-carboxylase specific activity was the same in GA3-treated and untreated cultures and was not detected in cultures treated with uniconazole, an inhibitor of gibberellic acid biosynthesis. Chalcone-isomerase specific activity was lower in GA3-treated cultures than in untreated cultures and was lower in uniconazole-treated cultures than in the GA3-treated cultures. The total chalcone synthase activity in extracts from GA3- and from uniconazole-treated cells was not significantly different from that in extracts of untreated tissue. When these extracts were chromatographed on a Mono Q column, three peaks of chalcone synthase activity were found in extracts of nontreated cells, whereas only two of these peaks were detected in extracts of GA3-treated cells. The extracts from GA3-treated cells did not contain the peak of chalcone synthase activity that, in untreated cells, preceded the main peak. The correlation between the absence of this peak and the inhibition of anthocyanin accumulation suggests that this form of chalcone synthase is responsible for anthocyanin synthesis and that GA3 prevents this form from appearing in the cells.  相似文献   

7.
The role of calmodulin (CaM) in gibberellic acid (GA3)-stimulated Ca2+ uptake was investigated in endomembranes isolated from aleurone cells of barley (Hordeum vulgare L.). Unidirectional Ca2+ -uptake activity of endoplasmic reticulum (ER) was higher in membranes isolated from aleurone layers treated for 16 h with GA3 and Ca2+ compared with those isolated from layers incubated in Ca2+ alone. However, the level of uptake from Ca2+-treated tissue could be stimulated to that of the GA3-treated cells by applying exogenous CaM which increased the V max of the Ca2+ transporter approximately threefold. Calcium uptake in ER from GA3-treated tissue was inhibited by the CaM antagonist W7 in 50% of experiments, whereas the activity in membranes from non-GA3-treated tissue was unaffected. Treatment with GA3 also led to a twofold increase in CaM levels in aleurone layers within 4–6 h, paralleling the time course of the stimulation of Ca2+ uptake and preceding the stimulation of α-amylase secretion. We propose that the elevation of Ca2+ uptake into the ER induced by GA3 may be coordinated and regulated by elevated levels of membrane-associated CaM and this may regulate Ca2+-dependent α-amylase synthesis in the lumen of the ER.  相似文献   

8.
GA3, cyclic AMP as well as 3′-AMP and 5′-AMP induced the formation of floral buds inImpatiens balsamina under strictly non-inductive photoperiods. While photoperiods and treatments with GA3 or AMPs did not much affect acid phosphatase activity, AMPs increased the activity of alkaline phosphatase both in the stem and the leaves under both photoperiods. The phosphatase activity of the water- and GA3-treated plants under inductive photoperiods was higher than that of the plants of the respective treatments under non-inductive photoperiods. GA3 as well as all the three AMPs induced both in the stem and the leaves the formation of new isoenzymes of both these enzymes under both photoperiods.  相似文献   

9.
Gibberellic acid (GA3) induces invertase activity within 6 hours in Avena stem segments that are incubated in the dark at 23°. The maximum amount of promotion is about 5 times that of invertase activity in untreated segments. GA3 causes significant promotion of invertase activity at concentrations as low as 3 × 10−5 μm GA3. The increase in invertase activity elicited by GA3 between 3 × 10−5 μm and 300 μm closely parallels the growth promotion that is caused by GA3 over this concentration range. In control segments, invertase activity rises steeply during the first 6 hours of incubation, then decays slowly between 12 and 48 hours. In GA3-treated segments, the invertase activity also rises during the first 6 hours, parallel to that in control segments and continues to rise during the next 42 hours. These changes in invertase activity during 48-hour incubation periods do not parallel the changes in growth that occur in control and GA3-treated segments. Cycloheximide at 10 μg/ml abolishes all GA3-promoted growth and invertase activity in these segments. Actinomycin D at 40 and 80 μg/ml decreases GA3-promoted growth by 20% and invertase activity by 38 and 44%, respectively. The data clearly support the idea that protein synthesis is necessary for GA3-promoted growth and invertase activity in Avena stem segments.  相似文献   

10.
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2∶3 and F3∶4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53%) averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased). Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1–2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.  相似文献   

11.
The N-substituted phthalimide AC 94377 (1-(3-chlorophthalimido)-cyclohexanecarboxamide) was equally effective as a mixture of the gibberellins A4 and A7 (GA4/7) in breaking dormancy and stimulating germination of celery seeds when either was used in combination with ethephon or daminozide as a seed soak. Whereas seedlings emerging from GA4/7-treated seeds became etiolated in comparison with those from untreated seeds, those from AC 94377-treated seeds showed normal development. Preharvest sprays of gibberellic acid (GA3) increased the height of mature plants in comparison with untreated controls by about 16 per cent whereas AC 94377 was ineffective. The yield from GA3-treated plots was about 10 per cent greater than that from AC 94377-treated plots.  相似文献   

12.
《Plant science》1988,55(3):185-190
The induction of α-amylase and acid phosphatase by gibberellic acid (GA3) was significantly higher (2–4-fold) in embryoless half-seeds of wheat than that observed in the excised aleurones. Addition of endosperm extract to excised aleurones enhanced the stimulatory effect of GA3 on amylase activity by approximately 2-fold. Substitution of endosperm extract by 19 amino acids in GA3-treated aleurones also brought about a 2–2.5-fold stimulation of α-amylase activity. Subsequent studies revealed that the addition of seven non-polar amino acids (0.5 mM each) was sufficient for the enhanced induction of α-amylase (1.8–2.5-fold) in GA3-treated aleurones. A similatory effect of endosperm extract and amino acids on acid phosphatase activity was observed in GA3-treated wheat aleurones. These observations are of physiological significance since an increased pool of free amino acids (5-fold) was also witnessed in the incubation medium of GA3-treated half-seeds in comparison to the hormone-treated aleurones. The relative abundance of free amino acids in half-seed seems vital for the maximal induction of α-amylase and acid phosphatase. Thus, the presence of endosperm tissue associated with the aleurone layers is crucial for enhanced rate of production of GA3-induced α-amylase and acid phosphatase in the wheat system.  相似文献   

13.
Shant R. Taneja  R. C. Sachar 《Planta》1974,116(2):133-142
Summary Embryoless wheat (Triticum aestivum L.) half-seeds on incubation with gibberellic acid (GA3) showed a 2- to 2.5fold stimulation of monophenolase activity. The enzyme activity was not released into the incubation medium in GA3-treated half-seeds. The effect of GA3 was counteracted by the addition of abscisic acid (ABA) to the half-seeds. Adenosine-3,5-cyclic monophosphate and its structural analogues were ineffective in increasing the monophenolase activity. Actinomycin D and cycloheximide showed no inhibitory effecton the monophenolase activity in controls as well as in GA3-treated half-seeds, but on the contrary caused a 2- to 3fold stimulation of enzyme activity similar to that observed in endosperm treated with GA3 alone. However, there was no additive or synergistic enhancement of monophenolase activity when GA3 was tested in combination with cycloheximide or actinomycin D. GA3- or cyclic AMP-treated half-seeds showed no stimulation of o-diphenolase activity.  相似文献   

14.
Although fruit set and development are induced by applications of gibberellins, final fruit weight of gibberellin-induced parthenocarpic fruit is often less than that of pollinated fruit. We examined changes in the activities of sucrose-metabolizing enzymes and sugar accumulation in developing fruits of cultivated blueberry (Vaccinium ashei Reade) and their correlation with fruit growth upon pollination or exogenous applications of gibberellic acid (GA3). The objective was to determine if differences in fruit growth could be attributed to differences in enzyme activities and subsequent sugar accumulation in fruits. The fruit development period of GA3-treated fruits was 15 days longer than that of pollinated fruits. At maturity, GA3-treated fruit accumulated an average of 180 mg dry weight while pollinated fruit accumulated 390 mg dry weight. Dry weight accumulation in nonpollinated fruits was negligible and these fruits abscised by 45 days after bloom (DAB). The total carbon (C) cost (dry weight C + respiratory C) for fruit development was 109 and 244 mg C fruit-1 for GA3-treated and pollinated fruits, respectively. Hexose concentration increased to 100 mg (g fresh weight)-1 at ripening in both GA3-treated and pollinated fruits. Nonpollinated fruits reached a maximum hexose concentration at 45 DAB. Sucrose phosphate synthase (EC 2.4.1.14) and sucrose synthase (EC 2.4.1.13) activities reached a maximum of ≤5.0 μmol (g fresh weight)-1 h-1 in both GA3-treated and pollinated fruits. Soluble acid invertase (EC 3.2.1.26) activity increased to about 60 μmol (g fresh weight)-1 h-1 in both GA3-treated and pollinated fruits at ripening, while in nonpollinated fruits, a maximum soluble acid invertase activity of 0.12 μmol (g fresh weight)-1 h-1 was measured at 24 DAB. Insoluble acid invertase activity declined during the early stages of fruit growth and remained relatively low throughout fruit development. Neutral invertase activity was low throughout development, increasing to 5 μmol (g fresh weight)-1 h-1 at ripening in GA3-treated and pollinated fruits. Our studies demonstrate that blueberry fruit development does not appear to be limited by sucrose metabolizing enzyme activity and/or the ability to accumulate sugars in either GA3-treated or pollinated fruits.  相似文献   

15.
Recently developed techniques have been used to reinvestigate the mechanism by which gibberellic acid (GA3) stimulates elongation of light-grown cucumber (Cucumis sativus L.) seedlings. Osmotic pressure and turgor pressure were slightly reduced in GA3-treated seedlings, which elongated 3.5 times faster than control seedlings. This indicated that GA3 enhancement of growth was not controlled by changes in the osmotic properties of the tissues. Stress/strain (Instron) analysis revealed that plastic extension of the cell walls of GA3-treated seedlings increased by up to 35% above the control values. Stress-relaxation measurements on frozen-thawed tissue showed that T0 the minimum relaxation time, was reduced following application of GA3. In vivo wall relaxation (measured by the pressure block technique) showed that the wall yield coefficient was increased, and the yield threshold was slightly reduced. Thus GA3 affected both the mechanical (viscoelastic) and biochemical (chemorheological) properties of the cell walls of light-grown cucumber. The previous hypothesis, that GA3 stimulates cucumber hypocotyl growth by increasing osmotic pressure and cell turgor, is contradicted by our results.  相似文献   

16.
Ramie (Boehmeria nivea L. Gaud) fibers extracted from the stem bast is one of the most important natural fibers. Ramie growth is severely hindered by drought stress but is promoted by gibberellins (GAs). In order to investigate ramie morphological and physiological responses to drought stress and GA3 treatment, four groups of potted ramie (severe drought stress (DS), severe drought stress and spraying with GA3 (DS + GA3), normal watering and spraying with GA3 (control + GA3), and normal watering as a control) were tested. The result showed that, comparing with the ramie growing under well watering condition, a decrease in chlorophyll a (Chl a) and carotenoid and an increase in proline and soluble sugar contents were commonly observed in drought-stressed and GA3-treated ramie. Different responses of the stem morphological traits, fiber yield, and seven physiological characteristics (relative water content, the activities of POD, SOD, and CAT enzymes, the contents of Chl b, endogenous GAs and MDA) were observed between drought-stressed and GA3-treated plants. When the ramie suffering drought stress was sprayed with GA3 (in (DS + GA3) group), the responses of some physiological traits (POD, SOD, CAT, MDA, and endogenous GAs) and morphological traits (stem shape and fiber yield) to drought stress disappeared completely or partially, and the plant presented similar characteristics of well-watered ramie in these traits. These results suggested that the application of exogenous GA3 can improve the drought tolerance of ramie.  相似文献   

17.
The influence of blue, red and white light and gibberellic acid (GA3) on gibberellin-like activity in tissue extracts of leaves, stems and roots was investigated during growth of pea seedlings (Pisum salivum L. cv. Bördi). Higher GA-like activity was found in leaves and stems of pea plants that were growing in blue light than in those under red or white light. Patterns of change of activity were different in leaves, stems and roots, and in GA3-treated plants.  相似文献   

18.
R. L. Jones 《Protoplasma》1987,138(2-3):73-88
Summary The cytochemical localization of adenosine triphosphatase (ATPase) was studied in the aleurone layer of barley (Hordeum vulgare L. cv. Himalaya). Isolated barley aleurone layers secrete numerous enzymes having acid phosphatase activity, including ATPase. The secretion of these enzymes was stimulated by incubation of the aleurone layer in gibberellic acid (GA3). ATPase was localized using the metal-salt method in tissue incubated in CaCl2 with and without GA3. In sections of tissue incubated without GA3, cytochemical staining was confined to a narrow band of cytoplasm adjacent to the starchy endosperm and to the cell wall of the innermost tier of aleurone cells. Cytochemical staining was absent from the organelles of tissues not treated with GA3. In tissue incubated in the presence of GA3, cytochemical staining was evident throughout the cytoplasm and cell walls of the tissue. In the cell wall, electron-dense deposits were found only in digested channels. The cell-wall matrix of GA3-treated aleurone did not stain, indicating that it does not permit diffusion of enzyme. In the cytoplasm of GA3-treated aleurone, all organelles except microbodies, plastids, and spherosomes stained for ATPase activity; endoplasmic reticulum (ER), Golgi apparatus, and mitochondria showed intense deposits of stain. The ER of the aleurone is a complex system made up of flattened sheets of membrane, which may be associated with both the Golgi apparatus and the plasma membrane. The dictyosome did not stain uniformly for ATPase activity; rather there was a gradation in staining of the cisternae from thecis (lightly stained) to thetrans (heavily stained) face. Vesicles associated with dictyosome cisternae also stained intensely as did the protein bodies of GA3-treated aleurone cells.  相似文献   

19.
Sorghum bicolor (L.) Moench lines with genetic differences in photoperiod requirement were planted in the field near Plainview, Texas (about 34° northern latitude) around June 1 and treated with gibberellic acid (GA3) solutions applied in the apical leaf whorl. GA3 hastened the date of floral differentiation (initiation). The greatest responses to GA3 were by 90M and 100M, the latest of the genotypes, for which floral initiation dates were hastened an average of 19.5 and 21.7 days, respectively, for the 4 years beginning in 1980. There were very small differences in dates of anthesis between control and GA3-treated plants. Microscopic examination of apical meristems collected between the date of floral initiation of GA3-treated plants and the later date of initiation of control plants revealed: (a) several morphological characteristics of floral differentiation in the apical meristem of treated plants, (b) consistent occurrence of vegetative morphology in control plants, (c) a few meristems from GA3-treated plants that appeared to be regressing in floral development and thus possibly exhibiting dedifferentiation. Dedifferentiation of prepanicle primordia into leaves would explain the observed equal or greater number of leaves in GA3-treated plants rather than the expected smaller number. It is apparent that the presence of a morphological differentiated floral meristem in sorghum does not drive subsequent floral development in the absence of inductive photoperiods. This further suggests that initial floral differentiation and subsequent floral development may be controlled separately in sorghum.  相似文献   

20.
Chlorophyll loss in leaves of cut flowers of alstroemeria (Alstroemeria pelegrina L. cv. Westland) was rapid in darkness and counteracted by irradiation and treatment of the flowers with gibberellic acid (GA3). The mechanism of the effect of GA3 under dark conditions was investigated. The content of various carbohydrates in the leaves under dark conditions rapidly decreased; this was not influenced by treatment with GA3. indicating that the loss of carbohydrates in the leaves did not induce the loss of chlorophyll. Placing the cut flowers in various solutions of organic and inorganic nutrients exhibited no significant effect on the retention of chlorophyll in leaves of dark-senescing flowers. The total nitrogen content in leaves of dark-senescing cut flowers decreased with time. Leaves of GA3-treated flowers retained more nitrogen. In contrast, the buds of GA3-treated flowers retained less nitrogen during senescence in the dark than control buds. To investigate whether GA3 affects export of assimilates from the leaf to various parts of control and GA3-treated flowers, we labelled one leaf with radioactive carbon dioxide. 14C-assimilates accumulated preferentially in the flowers, in which the relative specific activity of the youngest floral buds was highest. No significant differences were observed in the distribution of 14C-labelled compounds between the buds of control and GA3-treated flowers. To establish the importance of source-sink relations for the loss of leaf chlorophyll we removed the flower buds (i. e. the strongest sink) from the cut flowers. This removal only slightly delayed chlorophyll loss as compared to the large delay caused by GA3-treatment. In addition, detached leaf tips exhibited chlorophyll loss in the dark, which was delayed by GA3-treatment in a fashion comparable with that in flowers. Together these data demonstrate that interactions of the leaves with other plant organs are not essential for chlorophyll loss during senescence in the dark. Additionally, we have found no evidence that GA3 delays the loss of chlorophyll by affecting the transport of nutrients within the cut flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号