首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular accumulations of polyamines and ribonucleic acid (RNA) were compared in the polyauxotrophic mutants of Escherichia coli strain 15 TAU and E. coli K-12 RC(re1) met(-) leu(-). Putrescine, spermidine, and their monoacetyl derivatives were the main polyamines in both strains, when grown in glucose-mineral medium. No significant degradation of either (14)C-putrescine or (14)C-spermidine was found in growing cultures of strain 15 TAU, which requires thymine, arginine, and uracil for growth. Experiments with this organism showed that in a variety of different incubation conditions, which included normal growth, amino acid starvation, inhibition by chloramphenicol or streptomycin, or thymine deprivation, a close correlation was seen between the intracellular accumulation of unconjugated spermidine and RNA. In the presence of arginine, the antibiotics stimulated the production of putrescine and spermidine per unit of bacterial mass. Deprivation of arginine also resulted in an increase in the production of putrescine per unit of bacterial mass, most of which was excreted into the growth medium. However, in this system the antibiotics reduced the synthesis of putrescine. Furthermore, streptomycin caused a rapid loss of cellular putrescine into the medium. The latter effect was not seen in anaerobic conditions or in a streptomycin-resistant mutant of 15 TAU. Methionine added to the growth medium of growing TAU not only markedly increased the total production of spermidine, but also increased both the intracellular concentration of spermidine and the accumulation of RNA. Exogenous spermidine extensively relaxed RNA synthesis in amino acid-starved cultures of 15 TAU. Analysis in sucrose density gradients showed that the RNA accumulated in the presence of spermidine was ribosomal RNA.Cells of E. coli K-12 RC(rel) met(-) leu(-), grown in a complete medium, had approximately the same ratio of free spermidine to RNA as did strain 15 TAU. However, the relaxed strain showed a much lower ratio of putrescine to spermidine than the stringent 15 TAU. Omission of methionine stopped spermidine synthesis and markedly increased both the intracellular accumulation and the total production of putrescine. It seems that a high intracellular level of spermidine acts as a feedback inhibitor in the biosynthesis of putrescine in this strain. The hypothesis that the intracellular concentration of polyamines may participate in the control of the synthesis of ribosomal RNA in bacteria is discussed.  相似文献   

2.
1. When strains of Escherichia coli, bearing transferable factors for resistance to the tetracyclines (R-factors), and previously cultured in the absence of the tetracyclines, are grown for 15–30min. in a low, subinhibitory, concentration (10μg./ml.) of oxytetracycline or tetracycline, there is a rapid and striking increase in resistance to oxytetracycline or tetracycline, this being associated with a marked fall in the absorption of the drug by the cells. 2. Very short preincubation (1min.) with oxytetracycline, followed by growth for 15–30min. in drug-free medium, produces a marked fall in the absorption of the drug by the resistant cells. Preincubation for 30min. with very low concentrations (0·05μg./ml.) of oxytetracycline produces a similar effect. 3. β-Apo-oxytetracycline, which has very little antibacterial activity, also induces a decreased absorption of oxytetracycline. 4. The ability to exclude oxytetracycline is retained by preincubated resistant cells after growth for 2hr. in drug-free medium. However, after growth for 16hr. in drug-free medium, the cells absorb oxytetracycline freely. 5. Chloramphenicol and proflavine inhibit the adaptive decrease in tetracycline absorption. 5-Fluorouracil has only a slight effect. 6. Spheroplasts prepared from resistant cells show an impaired response to preincubation with tetracycline, compared with intact cells. 7. The relevance of these results to the probable mechanism of tetracycline resistance in R-factor-bearing E. coli is discussed.  相似文献   

3.
A screening method based on the selection of strains of Leuconostoc oenos 44.40 resistant to bovine bile was developed to obtain strains of the organism more resistant to lyophilization damage. These strains could be used as starter cultures in the malolactic fermentation of wine. The strain resistant to bovine bile was 20% more viable after lyophilization than strains not resistant to bovine bile. This was confirmed in both laboratory-scale production (100 ml) and pilot-scale production (100 liters). Lyophilized cells of strains sensitive and resistant to bovine bile were inoculated into wine, and the malate metabolism by the organism was monitored in the wine. Resistance to bovine bile did not change the malate metabolism characteristic of the organism. A comparison was made of the fatty acid compositions of the two strains. There was a difference in the fatty acid distribution pattern for these two strains. The bovine bile-resistant strain contained more dodecanoic, hexadecanoic, and octadecanoic acid and less tetradecanoic and hexadecanoic acid than did the bovine bile-sensitive strain. Both strains contained high levels of C-19 cyclopropane fatty acid.  相似文献   

4.
In the arginine producer AHr-5, an L-arginine hydroxamate-resistant mutant of Bacillus subtilis, accumulation of N8-acetyl-L-ornithine increased as the level of L-arginine accumulation increased in the medium containing L-glutamic acid. Ornithine carbamoyltransferase of this strain was genetically derepressed. These results suggested that carbamoylphosphate might be deficient in vivo. With the intention to increase endogenous carbamoylphosphate, pyrimidine analogs inhibiting growth were selected and the mutants resistant to these compounds were derived from the AHr-5 mutant. Of the resistant mutants derived, the 6-azauracil-resistant mutant AAr-9 produced 28 mg of L-arginine per ml, which corresponded to more than twofold the amount produced by the parent strain. Derivation of an arginine-requiring mutant from the double-resistant mutant AAr-9 provides a new advantageous method for the production of L-citrulline. The increase in arginine and citrulline production is discussed.  相似文献   

5.
In the arginine producer AHr-5, an L-arginine hydroxamate-resistant mutant of Bacillus subtilis, accumulation of N8-acetyl-L-ornithine increased as the level of L-arginine accumulation increased in the medium containing L-glutamic acid. Ornithine carbamoyltransferase of this strain was genetically derepressed. These results suggested that carbamoylphosphate might be deficient in vivo. With the intention to increase endogenous carbamoylphosphate, pyrimidine analogs inhibiting growth were selected and the mutants resistant to these compounds were derived from the AHr-5 mutant. Of the resistant mutants derived, the 6-azauracil-resistant mutant AAr-9 produced 28 mg of L-arginine per ml, which corresponded to more than twofold the amount produced by the parent strain. Derivation of an arginine-requiring mutant from the double-resistant mutant AAr-9 provides a new advantageous method for the production of L-citrulline. The increase in arginine and citrulline production is discussed.  相似文献   

6.
Three tobacco cell lines have been analyzed which are resistant to lethal inhibitors of either putrescine production or conversion of putrescine into polyamines. Free and conjugated putrescine pools, the enzymic activities (arginine, ornithine, and S-adenosylmethionine decarboxylases), and the growth characteristics during acidic stress were measured in suspension cultures of each cell line. One cell line, resistant to difluoromethylornithine (Dfr1) had a very low level of ornithine decarboxylase activity which was half insensitive to the inhibitor in vitro. Intracellular free putrescine in Dfr1 was elevated 10-fold which was apparently due to a 20-fold increase in the arginine decarboxylase activity. The increased free putrescine titer was not reflected in an increased level of spermidine, spermine, or putrescine conjugation. Dfr1 cultures survived acidic stress at molarities which were lethal to wild type cultures. Two other mutants, resistant to methylglyoxal bis(guanylhydrazone) (Mgr3, Mgr12), had near normal levels of the three decarboxylases and normal titers of free putrescine, spermidine, and spermine. Both mutants however had elevated levels of conjugated putrescine. Mgr12 had an increased sensitivity to acidic medium. These results suggest that increased levels of free putrescine production may enhance the ability of tobacco cells to survive acid stress. This was supported by the observation that cytotoxic effects of inhibiting arginine decarboxylase in wild type cell lines were dependent on the acidity of the medium.  相似文献   

7.
To increase the productivity of l-phenylalanine from acetamidocinnamic acid, we screened bacteria containing high acetamidocinnamate amidohydrolase activity, and strain S-5 containing high activity was isolated from soil. The bacteria were identified as Corynebacterium sp. S-5.When strain S-5 was cultured in a medium containing acetamidocinnamic acid as the sole carbon source or enzyme inducer, the formation of acetamidocinnamate amidohydrolase was observed. This was controlled by catabolite repression. When the strain was cultured in a medium containing glucose and acetamidocinnamic acid as the sole nitrogen source, it showed low acetamidocinnamate amidohydrolase activity and an increased doubling time.To obtain acetamidocinnamate amidohydrolase-hyperproducing strain, we enriched cells growing faster than strain S-5 in a medium containing glucose and acetamidocinnamic acid by continuous culture of mutagenized cells. Mutant C-23 had 12-fold the enzyme production and 3-fold the growth rate of the wild-type strain in a medium containing glucose. Acetamidocinnamate amidohydrolase formation in the mutant did not require acetamidocinnamic acid as enzyme inducer and was resistant to catabolite repression.  相似文献   

8.
Rhizobium meliloti, like many other bacteria, accumulates high levels of glutamic acid when osmotically stressed. The effect was found to be proportional to the osmolarity of the growth medium. NaCl, KCI, sucrose, and polyethylene glycol elicited this response. The intracellular levels of glutamate and K+ began to increase immediately when cells were shifted to high-osmolarity medium. Antibiotics that inhibit protein synthesis did not affect this increase in glutamate production. Cells growing in conventional media at any stage in the growth cycle could be suspended in medium causing osmotic stress and excess glutamate accumulated. The excess glutamate did not appear to be excreted, and the intracellular level eventually returned to normal when osmotically stressed cells were suspended in low-osmolarity medium. A glt mutant lacking glutamate synthase and auxotrophic for glutamate accumulated excess glutamate in response to osmotic stress. Addition of isoleucine, glutamine, proline, or arginine stimulated glutamate accumulation to wild-type levels when the mutant cells were suspended in minimal medium with NaCl to cause osmotic stress. In both wild-type and mutant cells, inhibitors of transaminase activity, including azaserine and aminooxyacetate, reduced glutamate levels. The results suggest that the excess glutamate made in response to osmotic stress is derived from degradation of amino acids and transamination of 2-ketoglutarate.  相似文献   

9.
The effect of copper was tested on the growth of many strains of yeast. Plate culture on density gradient agar of copper was used for estimating the growth response to copper. Growth in many strains was more strongly inhibited by the copper-aquo complex than by the copper-amino acid complex. Debaryomyces hansenii IFO 023 was found a suitable strain for the present study, because it was not resistant, not producing H2S, and copper absorption by this strain was similar to that of the resistant strain. Growth of yeast cells in medium containing copper was affected by pH and concentration of amino acid in medium. Absorption of copper into intact cells was almost saturated for the initial few minutes. It was also affected by the addition of amino acid to copper solution. Our results indicated that the growth response of yeast to copper was closely related to copper absorption into cells. About 60 percent of copper absorbed into cells was distributed in the soluble fraction of the cell homogenate which was obtained by centrifugation at 105,000 g for 60 min.  相似文献   

10.
Protamylasse is a residual compound occurring during the industrial production of starch from potatoes. It contains a variety of nutrients and all necessary minerals and could be used as a carbon, nitrogen, and energy source for the growth of bacteria and also for cyanophycin (CGP) biosynthesis. Media containing protamylasse as the sole compound diluted only in water were therefore examined for their suitability in CGP production. Among various bacterial strains investigated in this study, a recombinant strain of Escherichia coli DH1 harboring plasmid pMa/c5-914::cphA6803, which carries the cyanophycin synthetase structural gene (cphA) from Synechocystis sp. strain PCC6803, was found to be most suitable. Various cultivation conditions for high CGP contents were first optimized in shake flask cultures. The optimized conditions were then successfully applied to 30- and 500-liter fermentation scales in stirred tank reactors. A maximum CGP content of 28% (wt/wt) CGP per cell dry matter was obtained in 6% (vol/vol) protamylasse medium at an initial pH of 7.0 within a cultivation period of only 24 h. The CGP contents obtained with this recombinant strain employing protamylasse medium were higher than those obtained with the same strain cultivated in mineral salts medium or in expensive commercial complex media such as Luria-Bertani or Terrific broth. It was shown that most amino acids present in the protamylasse medium were almost completely utilized by the cells during cultivation. Exceptions were alanine, tryptophan, tyrosine, and most interestingly, arginine. Furthermore, CGP was easily isolated from protamylasse-grown cells by applying the acid extraction method. The CGP exhibited a molecular mass of about 26 to 30 kDa and was composed of 50% (mol/mol) aspartate, 46% (mol/mol) arginine, and 4% (mol/mol) lysine. The use of cheap residual protamylasse could contribute in establishing an economically and also ecologically feasible process for the biotechnological production of CGP.  相似文献   

11.
The mechanism and the kinetic of the assimilation of mixed substrates during the organism growth and the product excretion by strain of Saccharomycopsis lipolytica have been studied. The assimilation of citric acid for the organism growth was prevented when glucose and/or n-paraffins are present as substrates. Citric acid concentrations higher than 30 g/l in the fermentation medium decrease the growth rate on the substrate glucose. Kinetic studies of the mixed substrate assimilation by means of a n-tetradecane-1-C-labelled paraffin fraction proved that in discontinuous as well as in continuous 1-stage-processes for microbial production of citric acid glucose as substrate is only used for the organism growth whereas the n-paraffin fraction is only used for the acid excretion.  相似文献   

12.
Streptococcus agalactiae type la strain 090 produced a cell-associated hemolysin during exponential growth in medium lacking proteins. Growth of the organism in medium containing proteins or medium supplemented with Tween 40 resulted in the appearance of extracellular hemolytic activity that was filterable. Maximum extracellular hemolytic activity was obtained in the late exponential phase of growth corresponding to the maximum number of cells. Extracellular hemolysin released in medium containing proteins could be precipitated by ammonium sulfate. Cell-associated hemolysin could be extracted in the cold by purified lipoteichoic acid from the organism. Purification and characterization of the extracellular hemolysin by column chromatography showed that the hemolysin was associated with molecules eliciting its release. Hemolysin associated with lipoteichoic acid or Tween 40 had an apparent molecular weight of 1,800,000 or 60,000 daltons, respectively.  相似文献   

13.
High frequency of spontaneous and UV-and acridine dye-induced variants susceptible to oxytetracycline (OTC) and deprived of the capacity for synthesizing this antibiotic was observed in strain LST-118 of Actinomyces rimosus. The cells of strain LST-118 of Act. rimosus contained extrachromosomal DNA not found in its OTC susceptible variant BS87, which provides evidence in favour of participation of the extrachromosomal genetic elements in control of OTC resistance of the cells of Act. rimosus, LST-118. The OTC resistance in strain LST-118 is of inducable character. The resistance level is increasing from the beginning of the antibiotic synthesis and initially the subinhibitory concentrations of OTC in the medium were the inductors triggering cellular mechanisms ensuring resistance of the cell to the increasing concentrations of OTC in the medium. The capacity for absorption of OTC in Act rimosus is 2--3 times lower than that in E. coli. The experiments with labeled tetracycline showed that the cells of the actinomycete absorbed OTC when it was present in the medium. The absorption of the main amount of the antibiotic was registered during the first 5 minutes. The difference in absorption of OTC by the cells of the antibiotic resistant and sensitive strains was insignificant.  相似文献   

14.
Isoperoxidases were detected in resistant Rossol and susceptible Roma VF tomato roots uninfected and infected by Meloidogyne incognita. Syringaldazine, guaiacol, p-phenylenediamine-pyrocatechol (PPD-PC), and indoleacetic acid (IAA) were used as substrates, and the corresponding peroxidative activities were detected either in cytoplasmic or in cell wall fractions, except for IAA oxidase, which was measured in soluble and microsomal fractions. Isoperoxidase activities and cellular locations were induced differently in resistant and susceptible cultivars by nematodes. Nematode infestation markedly enhanced syringaldazine oxidase activity in cell walls of the resistant cultivar. This isoperoxidase is involved in the last step of lignin deposition in plants. Conversely, the susceptible cultivar reacted to M. incognita infection with an increase in cytoplasmic PPD-PC oxidase activity, which presumedly is involved in ethylene production; no changes in cell wall isoperoxidases were observed. IAA oxidase was inhibited in susceptible plants after nematode inoculation, whereas in resistant plants this activity increased in the soluble fraction and decreased in the microsomal fraction.  相似文献   

15.
Both Escherichia coli B and a proflavine-resistant mutant, E. coli B/Pr, took up the same amounts of proflavine when suspended in buffer containing the dye. In growth media, however, sensitive cells took up more proflavine than did resistant cells. Adding growth media or any one of several constituents of these media, including amino acids, glycerol, pyruvic acid, and metabolizable sugars, to resistant cells that had taken up proflavine in buffer caused them to lose the dye, but had less or no effect on sensitive cells. Certian salts caused an equal release of proflavine from resistant and sensitive cells. Proflavine released from resistant cells by glucose was not changed chemically. The effects of temperature and metabolic inhibitors suggest that proflavine uptake is a passive process but that its release may be an active one, dependent on metabolism. Glucose had more effect on the proflavine binding of E. coli B grown in a minimal medium than on that of cells grown in a complex medium. E. coli B was less susceptible to proflavine when growing in a minimal medium. The effects of other synthetic media on proflavine susceptibility of E. coli B were also studied. Deoxyribonucleic acid and envelopes from sensitive and resistant cells bound the same amounts of proflavine, and no difference was seen in the site of dye binding when sensitive and resistant cells that had taken up proflavine in buffer were sonically broken and fractionated. The results suggest that sensitive and resistant cells are equally permeable to proflavine but differ in the ease with which metabolites cause them to release bound proflavine. So far, however, these differences do not account completely for the ability of resistant cells to grow in high proflavine concentrations.  相似文献   

16.
When a nickel resistant strain N08 of S. cerevisiae was grown in a Ni-supplemented medium, approximately 70% of the nickel is distributed in the soluble fraction. The soluble fraction was chromatographed on Sephadex G-10 and the fraction contained both nickel and large amounts of histidine. When cells were grown in medium containing various combinations of nickel and magnesium and which exhibited approximately 50% growth inhibition, a molar ratio of intracellular histidine and nickel contents remained constant at 1.2-1.4, indicating that the increase in histidine content is correlated with nickel accumulation. The wild type strain 0605-S6, however, exhibits no increase in histidine content when grown in a Ni-supplemented medium, and, therefore, a nickel-resistant mechanism of yeast appears to be the formation of histidine-nickel complexes.  相似文献   

17.
To study the importance of arginine provision and phosphate limitation for synthesis and accumulation of cyanophycin (CGP) in Acinetobacter sp. strain ADP1, genes encoding the putative arginine regulatory protein (argR) and the arginine succinyltransferase (astA) were inactivated, and the effects of these mutations on CGP synthesis were analyzed. The inactivation of these genes resulted in a 3.5- or 7-fold increase in CGP content, respectively, when the cells were grown on glutamate. Knockout mutations in both genes led to a better understanding of the effect of the addition of other substrates to arginine on CGP synthesis during growth of the cells of Acinetobacter sp. strain ADP1. Overexpression of ArgF (ornithine carbamoyltransferase), CarA-CarB (small and large subunits of carbamoylphosphate synthetase), and PepC (phosphoenolpyruvate carboxylase) triggered synthesis of CGP if amino acids were used as a carbon source whereas it was not triggered by gluconate or other sugars. Cells of Acinetobacter sp. strain ADP1, which is largely lacking genes for carbohydrate metabolism, showed a significant increase in CGP contents when grown on mineral medium supplemented with glutamate, aspartate, or arginine. The Acinetobacter sp. ΔastA(pYargF) strain is unable to utilize arginine but synthesizes more arginine, resulting in CGP contents as high as 30% and 25% of cell dry matter when grown on protamylasse or Luria-Bertani medium, respectively. This recombinant strain overcame the bottleneck of the costly arginine provision where it produces about 75% of the CGP obtained from the parent cells grown on mineral medium containing pure arginine as the sole source of carbon. Phosphate starvation is the only known trigger for CGP synthesis in this bacterium, which possesses the PhoB/PhoR phosphate regulon system. Overexpression of phoB caused an 8.6-fold increase in CGP content in comparison to the parent strain at a nonlimiting phosphate concentration.  相似文献   

18.
19.
20.
Conversion of glycerol to 1,3-propanediol (1,3-PDO) is an attractive option to increase the economic efficiency of the biofuel industry. A bacterial strain that produced 1,3-PDO in the presence of glycerol was isolated from thin stillage, the fermentation residue of bioethanol production. This 1,3-PDO-producing organism was identified as Lactobacillus panis through biochemical characteristics and by 16S rRNA sequencing. Characterization of the L. panis strain hereafter designated as PM1 revealed it was an aerotolerant acidophilic anaerobe able to grow over a wide range of temperatures; tolerant to high concentrations of sodium chloride, ethanol, acetic acid, and lactic acid; and resistant to many common antibiotics. L. panis PM1 could utilize glucose, lactose, galactose, maltose, xylose, and arabinose, but could not grow on sucrose or fructose. Production of 1,3-PDO by L. panis PM1 occurred only when glucose was available as the carbon source in the absence of oxygen. These metabolic characteristics strongly suggested NADH recycling for glucose metabolism is achieved through 1,3-PDO production by this strain. These characteristics classified L. panis PM1 within the group III heterofermentative lactic acid bacteria, which includes the well-characterized 1,3-PDO-producing strain, Lactobacillus reuteri. Metabolite production profiles showed that L. panis PM1 produced considerable amounts of succinic acid (~11–12 mM) from normal MRS medium, which distinguishes this strain from L. reuteri strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号