首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Subfragment 2 (S2), the segment that links the two myosin heads to the thick filament backbone, may serve as a swing-out adapter allowing crossbridge access to actin, as the elastic component of crossbridges and as part of a phosphorylation-regulated on-off switch for crossbridges in smooth muscle. Low-salt expansion increases interfilament spacing (from 52 nm to 67 nm) of rigor insect flight muscle fibers and exposes a tethering segment of S2 in many crossbridges. Docking an actoS1 atomic model into EM tomograms of swollen rigor fibers identifies in situ for the first time the location, length and angle assignable to a segment of S2. Correspondence analysis of 1831 38.7 nm crossbridge repeats grouped self-similar forms from which class averages could be computed. The full range of the variability in angles and lengths of exposed S2 was displayed by using class averages for atomic fittings of acto-S1, while S2 was modeled by fitting a length of coiled-coil to unaveraged individual repeats. This hybrid modeling shows that the average length of S2 tethers along the thick filament (except near the tapered ends) is approximately 10 nm, or 16% of S2's total length, with an angular range encompassing 90 degrees axially and 120 degrees azimuthally. The large range of S2 angles indicates that some rigor bridges produce positive force that must be balanced by others producing drag force. The short tethering segment clarifies constraints on the function of S2 in accommodating variable myosin head access to actin. We suggest that the short length of S2 may also favor intermolecular head-head interactions in IFM relaxed thick filaments.  相似文献   

2.
As a first step toward freeze-trapping and 3-D modeling of the very rapid load-induced structural responses of active myosin heads, we explored the conformational range of longer lasting force-dependent changes in rigor crossbridges of insect flight muscle (IFM). Rigor IFM fibers were slam-frozen after ramp stretch (1000 ms) of 1-2% and freeze-substituted. Tomograms were calculated from tilt series of 30 nm longitudinal sections of Araldite-embedded fibers. Modified procedures of alignment and correspondence analysis grouped self-similar crossbridge forms into 16 class averages with 4.5 nm resolution, revealing actin protomers and myosin S2 segments of some crossbridges for the first time in muscle thin sections. Acto-S1 atomic models manually fitted to crossbridge density required a range of lever arm adjustments to match variably distorted rigor crossbridges. Some lever arms were unchanged compared with low tension rigor, while others were bent and displaced M-ward by up to 4.5 nm. The average displacement was 1.6 +/- 1.0 nm. "Map back" images that replaced each unaveraged 39 nm crossbridge motif by its class average showed an ordered mix of distorted and unaltered crossbridges distributed along the 116 nm repeat that reflects differences in rigor myosin head loading even before stretch.  相似文献   

3.
During active muscle contraction, tension is generated through many simultaneous, independent interactions between the molecular motor myosin and the actin filaments. The ensemble of myosin motors displays heterogeneous conformations reflecting different mechanochemical steps of the ATPase pathway. We used electron tomography of actively contracting insect flight muscle fast-frozen, freeze substituted, Araldite embedded, thin-sectioned and stained, to obtain 3D snapshots of the multiplicity of actin-attached myosin structures. We describe procedures for alignment of the repeating lattice of sub-volumes (38.7 nm cross-bridge repeats bounded by troponin) and multivariate data analysis to identify self-similar repeats for computing class averages. Improvements in alignment and classification of repeat sub-volumes reveals (for the first time in active muscle images) the helix of actin subunits in the thin filament and the troponin density with sufficient clarity that a quasiatomic model of the thin filament can be built into the class averages independent of the myosin cross-bridges. We show how quasiatomic model building can identify both strong and weak myosin attachments to actin. We evaluate the accuracy of image classification to enumerate the different types of actin–myosin attachments.  相似文献   

4.
We have adapted a real space refinement protocol originally developed for high-resolution crystallographic analysis for use in fitting atomic models of actin filaments and myosin subfragment 1 (S1) to 3-D images of thin-sectioned, plastic-embedded whole muscle. The rationale for this effort is to obtain a refinement protocol that will optimize the fit of the model to the density obtained by electron microscopy and correct for poor geometry introduced during the manual fitting of a high-resolution atomic model into a lower resolution 3-D image. The starting atomic model consisted of a rigor acto-S1 model obtained by X-ray crystallography and helical reconstruction of electron micrographs. This model was rebuilt to fit 3-D images of rigor insect flight muscle at a resolution of 7 nm obtained by electron tomography and image averaging. Our highly constrained real space refinement resulted in modest improvements in the agreement of model and reconstruction but reduced the number of conflicting atomic contacts by 70% without loss of fit to the 3-D density. The methodology seems to be well suited to the derivation of stereochemically reasonable atomic models that are consistent with experimentally determined 3-D reconstructions computed from electron micrographs.  相似文献   

5.
The structure and function of myosin crossbridges in asynchronous insect flight muscle (IFM) have been elucidated in situ using multiple approaches. These include generating “atomic” models of myosin in multiple contractile states by rebuilding the crystal structure of chicken subfragment 1 (S1) to fit IFM crossbridges in lower-resolution electron microscopy tomograms and by “mapping” the functional effects of genetically substituted, isoform-specific domains, including the converter domain, in chimeric IFM myosin to sequences in the crystal structure of chicken S1.We prepared helical reconstructions (∼ 25 Å resolution) to compare the structural characteristics of nucleotide-free myosin0 S1 bound to actin (acto-S1) isolated from chicken skeletal muscle (CSk) and the flight muscles of Lethocerus (Leth) wild-type Drosophila (wt Dros) and a Drosophila chimera (IFI-EC) wherein the converter domain of the indirect flight muscle myosin isoform has been replaced by the embryonic skeletal myosin converter domain. Superimposition of the maps of the frozen-hydrated acto-S1 complexes shows that differences between CSk and IFM S1 are limited to the azimuthal curvature of the lever arm: the regulatory light-chain (RLC) region of chicken skeletal S1 bends clockwise (as seen from the pointed end of actin) while those of IFM S1 project in a straight radial direction. All the IFM S1s are essentially identical other than some variation in the azimuthal spread of density in the RLC region. This spread is most pronounced in the IFI-EC S1, consistent with proposals that the embryonic converter domain increases the compliance of the IFM lever arm affecting the function of the myosin motor. These are the first unconstrained models of IFM S1 bound to actin and the first direct comparison of the vertebrate and invertebrate skeletal myosin II classes, the latter for which, data on the structure of discrete acto-S1 complexes, are not readily available.  相似文献   

6.
P Brun  J Malak  M H Bui  A M Duval  J Ohayon 《Biorheology》1991,28(3-4):143-150
Preliminary assumption of this model is that interactions between actin and myosin presupposes an exact three-dimensional geometrical correspondence between sites, due to the very short time constants present under physiological conditions. Only small and controlled torsions of the actin filaments are accepted. The model uses geometrical information concerning orientations and dimensions of myosin crossbridges and actin monomeres to modelize the distribution of their inter-actions. An orientation map of actin sites in the cross-section perpendicular to the filament axis is proposed, adapted to the specific filament array of vertebrate muscle. Orientation of myosin crossbridges follows Luther's rules. According to the model, any interaction between actin and myosin implies the superimposition of their respective cross-sectional planes. The axial length of actin monomere is 55 A; the distance between two crossbridges along the myosin filament axis is 143 A. The following properties are derived: 1) The shortening step of the sliding actin filament must be a multiple of 11 A (highest common factor). Taking into account the staggered disposition of the two actin strands and the presence of two heads for each cross-bridge, the most probable value for this shortening step is equal to 99 A. A specific scheme is proposed to describe the shortening process. The behavior of the modelized crossbridge does not need any elastic structure--2) Planes situated at 715 A (lowest common multiple) of actin and myosin coinciding planes are also in coincidence. In a hemi-sarcomere the maximal number of these planes, referred to as simultaneously activable planes, is 10 (20 if both myosin heads are considered). The proportion of interactions authorized by the site orientations is 1/12. In the model, the concept of randomly recruited crossbridges is replaced by a discretized recruitment, based on geometrical properties at an ultrastructural level. The proposed distribution is homogeneous: it can be extended radially in the sarcomere and authorizes the actin filament sliding in the whole physiological range under the control of a dual activation function, reproducing Ca++ temporal and spatial distribution.  相似文献   

7.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

8.
Reciprocal coupling between troponin C and myosin crossbridge attachment   总被引:5,自引:0,他引:5  
A S Zot  J D Potter 《Biochemistry》1989,28(16):6751-6756
The attachment of cycling myosin crossbridges to actin and the resultant muscle contraction are regulated in skeletal muscle by the binding of Ca2+ to the amino-terminal, regulatory sites of the troponin C (TnC) subunit of the thin filament protein troponin. Conversely, the attachment of crossbridges to actin has been shown to alter the affinity of TnC for Ca2+. In this study, fluorescently labeled TnC incorporated into reconstituted thin filaments was used to investigate the relationship between crossbridge attachment to actin and structural changes in the amino-terminal region of TnC. Fluorescence intensity changes were measured under the following conditions: saturating [Ca2+] in the absence of crossbridges, rigor crossbridge attachment in the presence and absence of Ca2+, and cycling crossbridge attachment. The percent of heavy meromyosin crossbridges associated with the thin filaments under these conditions was also determined. The results show that, in addition to the binding of Ca2+ to TnC, the attachment of both rigor and cycling crossbridges to actin alters the structure of TnC near the regulatory, Ca2+-specific sites of the molecule. A differential coupling between weakly versus strongly bound crossbridge states and TnC structure was detected, suggesting a possible differential regulation of these states by conformational changes in TnC. These findings illustrate a reciprocal coupling, via thin filament protein interactions, between structural changes in TnC and the attachment of myosin crossbridges to actin, such that each can influence the other, and indicate that TnC is not simply an on-off switch but may exist in a number of different conformations.  相似文献   

9.
The interaction of myosin crossbridges with actin under equilibrium conditions is reviewed. Similarities and differences between the weakly- and strongly-binding interactions of myosin crossbridges with actin filaments are discussed. A precise, narrow definition of weakly- binding crossbridges is given. It is postulated that the fundamental interaction of crossbridges with actin is that the crossbridge heads are mobile after attachment in the first case but not in the second. It is argued that because the weakly-binding crossbridge heads are mobile after attachment, the heads appear to function independently of each other. The lack of head mobility in attached strongly-binding crossbridges makes the strongly-binding crossbridge heads appear to act cooperatively. This model of the strongly-binding crossbridge gives an explanation for two important and otherwise unexplained observations. It explains why the rate constant of force decay after a small stretch is a sigmoidal function of nucleotide analogue concentration, and why, in the presence of analogues or in rigor, the rate constant of force decay after a small stretch is often significantly slower than the rate constant for myosin subfragment-1 detachment from actin in solution. The model of the weakly-binding crossbridge accurately describes the behavior of the myosin·ATP crossbridge.  相似文献   

10.
A real-space structure refinement method, originally developed for macromolecular X-ray crystallography, has been applied to protein structure analysis by electron microscopy (EM). This method simultaneously optimizes the fit of an atomic model to a density map and the stereo-chemical properties of the model by minimizing an energy function. The performance of this method is characterized at different resolution and signal-to-noise ratio conditions typical for EM electron density maps. A multi-resolution scheme is devised to improve the convergence of the refinement on the global energy minimum. Applications of the method to various model systems are demonstrated here. The first case is the arrangement of FlgE molecules in the helical filament of flagellar hook, in which refinement with segmented rigid bodies improves the density correlation and reduces severe van der Waals contacts among the symmetry-related subunits. The second case is a conformational analysis of the NSF AAA ATPase in which a multi-conformer model is used in the refinement to investigate the arrangement of the two ATPase domains in the molecule. The third case is a docking simulation in which the crystal structure of actin and the NOE data from NMR experiments on the dematin headpiece are combined with a low-resolution EM density map to generate an atomic model of the F-actin-dematin headpiece structure.  相似文献   

11.
Rigor insect flight muscle (IFM) can be relaxed without ATP by increasing ethylene glycol concentration in the presence of adenosine 5′-[β′γ- imido]triphosphate (AMPPNP). Fibers poised at a critical glycol concentration retain rigor stiffness but support no sustained tension (“glycol-stiff state”). This suggests that many crossbridges are weakly attached to actin, possibly at the beginning of the power stroke. Unaveraged three-dimensional tomograms of “glycol-stiff” sarcomeres show crossbridges large enough to contain only a single myosin head, originating from dense collars every 14.5 nm. Crossbridges with an average 90° axial angle contact actin midway between troponin subunits, which identifies the actin azimuth in each 38.7-nm period, in the same region as the actin target zone of the 45° angled rigor lead bridges. These 90° “target zone” bridges originate from the thick filament and approach actin at azimuthal angles similar to rigor lead bridges. Another class of glycol-PNP crossbridge binds outside the rigor actin target zone. These “nontarget zone” bridges display irregular forms and vary widely in axial and azimuthal attachment angles. Fitting the acto-myosin subfragment 1 atomic structure into the tomogram reveals that 90° target zone bridges share with rigor a similar contact interface with actin, while nontarget crossbridges have variable contact interfaces. This suggests that target zone bridges interact specifically with actin, while nontarget zone bridges may not. Target zone bridges constitute only ∼25% of the myosin heads, implying that both specific and nonspecific attachments contribute to the high stiffness. The 90° target zone bridges may represent a preforce attachment that produces force by rotation of the motor domain over actin, possibly independent of the regulatory domain movements. Force production by myosin heads during muscle contraction has long been modeled as a transition of attached crossbridges from a 90° to a 45° axial angle. Efforts to image crossbridge forms and angles intermediate between 90° heads in ATP-relaxed insect flight muscle (IFM)1 and the 45° angled bridges in rigor have used nucleotide analogs such as adenosine 5′-[β′γ-imido] triphosphate (AMPPNP) in stable equilibrium states to drive the crossbridges backwards from the 45° angle in rigor to an attached 90° preforce form, otherwise similar to myosin heads in ATP-relaxed fibers (Reedy et al., 1988; Tregear et al., 1990). However, AMPPNP alone will not fully relax IFM, and crossbridges binding AMPPNP retain many rigor-like features (Schmitz et al., 1996; Winkler et al., 1996). On the other hand, AMPPNP in combination with ethylene glycol will relax IFM. When poised at a critical glycol concentration, muscle stiffness is as high as rigor, suggesting crossbridge attachment, but fibers will not bear sustained tension (Clarke et al., 1984; Tregear et al., 1984). Two-dimensional (2-D) analysis of electron micrographs showed that this stiff glycol-PNP state resembled ATP-relaxed fibers in having dense collars every 14.5 nm along the thick filament and thin crossbridges originating from these collars at various axial angles around 90°. However, unlike relaxed muscle, stiff glycol-PNP fibers showed both 90° angled bridges that were regularly spaced every 38.7 nm and more intensity on the 19.3-nm layer line in optical and x-ray diffraction patterns (Reedy et al., 1988; Tregear et al., 1990). Crossbridges in this partially relaxed, glycol-PNP state are important because they may represent the form of the initial attachment of myosin with bound nucleotide preceding force generation (Marston and Tregear, 1984; Tregear et al., 1984; Reedy et al., 1988). This putative preforce 90° crossbridge could not be characterized in 3-D because its variable form and lattice arrangement precluded imaging by averaging methods of 3-D reconstruction. Recently, nonaveraging tomographic methods have been developed and successfully applied to rigor and aqueous-PNP, facilitating characterization of variable crossbridge forms that occur in situ (Taylor and Winkler, 1995, 1996; Schmitz et al., 1996; Winkler and Taylor, 1996). IFM is superb for structural study because the symmetry and spatial arrangement of filaments results in paired crossbridges on opposite sides of the actin filament. This in turn has given rise to a unique shorthand terminology. The individual crossbridge forms are not unique to IFM, only their symmetrical placement about the thin filament. The filament arrangement also facilitates the microtomy of a type of thin section with coplanar filaments that provide views of the entire crossbridge. The best of these, the myac layer, is a 25-nm-thick longitudinal section containing alternating myosin and actin filaments. In rigor, the maximum number of myosin heads attach to actin, forming doublet pairs every 38.7 nm, the “double chevrons” (Reedy, 1968). “Lead bridges,” which form the pair proximal to the M-band, consist of both heads of a myosin molecule and show an overall axial angle of 45° (Taylor et al., 1984). “Rear bridges,” which form the pair proximal to the Z-disk, consist of a single myosin head angled closer to 90°. Crossbridges originate from the thick filament along helical tracks so the azimuths of their origins follow a regular pattern. Relative to the thin filament in the myac layer, the lead bridges originate from the left-front and back-right of the adjacent thick filaments, while rear bridges originate from the left-back and right-front. At their actin ends, the crossbridge attachments follow the changing rotation of the actin protomers along the actin helix. The combination of the azimuth of the origin and the azimuth of the crossbridge contact to actin define the azimuthal angle of the crossbridge.Target zone is the name given to the region of the thin filament where crossbridges bind (Reedy, 1968); by implication this is the region of the thin filament where actin monomers are most favorably placed for actomyosin interaction. In our previous 3-D reconstructions of rigor and aqueous-PNP (Schmitz et al., 1996; Winkler et al., 1996), it was recognized that troponin maintained a constant position with respect to the most regularly positioned crossbridges, the lead bridges, and could thus be used as a landmark to determine the actin dyad orientation in the lead bridge target zone. The most sterically favorable actin position for crossbridge binding in the IFM lattice is midway between troponin densities, where lead bridges bind. The strained structure of the rigor rear bridges suggests that they bind at the very edge of the target zone (Schmitz et al., 1996; Winkler et al., 1996). The target zone defined by lead bridges alone is narrower than target zones previously considered for rigor muscle (Reedy, 1968) because it does not include rear bridge targets. When aqueous AMPPNP was added to rigor IFM, the tension dropped by two thirds, but the stiffness remained as high as rigor. This initially suggested a reversal of the power stroke, but 3-D reconstructions revealed that the lead bridges remained attached, midway between troponin densities, at axial and azimuthal angles close to rigor. The drop in tension without a large change in axial angle seemed to contradict the lever arm hypothesis for motion producing force. However, a cause for the loss of tension was found in tomograms, which showed that rear bridges detached and were replaced by nonrigor bridges bound to actins outside of the rigor target zone, to sites not selected by crossbridges even under the high-affinity conditions of rigor. These nontarget bridges in aqueous-PNP had variable axial and azimuthal angles and appeared to bind actin with variable contact interfaces. This suggested that they were nonspecifically bound to actin. Moreover, their variable structure did not suggest how a simple axial angle change could convert them to a familiar form, such as an angled rigor bridge. However, an intriguing doublet crossbridge group with a consistent structure was recognized in aqueous-PNP. Immediately M-ward of the “lead” rigor-like bridge was a “nonrigor” bridge bound at a 90° or antirigor angle. In this doublet, called a mask motif, both lead and M-ward nonrigor bridge pairs had similar azimuths and contact interfaces with actin and bound within the lead bridge target zone. A simple angle change could convert the M-ward, nonrigor bridge in a mask motif to a single headed lead bridge. Thus, in the mask motif, the lead bridge could be at the end of the power stroke, with the M-ward, nonrigor bridge near the beginning. The pairing of rigor and antirigor angled crossbridges bound to the same target zone suggests that crossbridges might act as a relay during muscle contraction (Schmitz et al., 1996). The affinity of myosin for actin in aqueous-PNP is high compared with weak binding intermediates thought to represent the beginning of the power stroke (Green and Eisenberg, 1980; Biosca et al., 1990). Therefore, the M-ward crossbridge in the mask motif may not represent the best candidate for a preforce crossbridge. Thus, it is important to characterize crossbridge structure in a state with lower actomyosin affinity, such as the stiff glycol-PNP state, where earlier 2-D analysis indicated that weakly attached 90° bridges are prevalent (Reedy et al., 1988). In this work, we have used two spatially invariant features, troponin position and lead crossbridge origins, to identify distinct classes of crossbridges. The invariant position of troponin recognized in 3-D reconstructions allows us to identify the lead bridge target zone and the actin dyad orientation relative to the bound crossbridges. In addition, the “front-back” rule for the azimuth of the origins of the lead target zone bridges distinguishes crossbridges that bind actin with the correct azimuth for specific binding from those that bind nonspecifically. By fitting the myosin subfragment 1 (S1) atomic structure to the in situ bridges, we can compare the positions of the motor and regulatory domains. Previous results and models have introduced the idea that during a power stroke, the crossbridge rotates over the actin binding site while acting as a long, relatively rigid lever arm (Huxley and Simmons, 1971), while others propose that the motor domain position remains constant and light chain domain movements provide a shorter lever arm (Rayment et al., 1993b ; Whittaker et al., 1995). Our previous results (Reedy et al., 1987, 1988; Schmitz et al., 1996; Winkler et al., 1996) and the present work show (a) that regulatory domain position can vary significantly while motor domain position remains constant and (b) that the motor domain can bind actin with varying orientations. This work supports the possibility that both rotation of the motor domain on actin and movements of the regulatory domain could contribute to the power stroke.  相似文献   

12.
The ultrastructure of sarcomeres of glycerinated rabbit psoas muscle was studied using freeze-fracture-etching, freeze-drying and optical diffraction techniques in comparison with the investigation of this muscle by plastic sections and negative staining methods. In frozen and dried myofibrils isolated from the above muscle the stripes of minor proteins location in A- and I-disks were clearly seen. The pivot structure in thick filaments was revealed in longitudinal fractures of the muscle. The ordered arrangement of myosin heads (crossbridges) associated with actin filaments was preserved in frozen longitudinal fractures as evidenced by optical diffraction. Freeze etching technique allowed to revealed some details of Z-line structure: alpha-actinin bridges connecting the ends of actin filaments of neighbouring sarcomeres and to preserve the lateral struts between actin filaments in I-disks.  相似文献   

13.
14.
Local helix-coil transitions in the coiled coil portion of myosin have long been implicated as a possible origin of tension generation in muscle. From a statistical mechanical theory of conformational transitions in coiled coils, the free energy required to form a randomly coiled bubble in the hinge region of myosin of the type conjectured by Harrington (Harrington, W. F., 1979, Proc. Natl. Acad. Sci. USA, 76:5066-5070) is estimated to be approximately 25 kcal/mol. Unfortunately this is far more than the free energy available from ATP hydrolysis if the crossbridges operate independently. Thus, in solution such bubbles are predicted to be absent, and the theory requires that the rod portion of myosin be a hingeless, continuously deforming rod. While such bubble formation in vivo cannot be entirely ruled out, it appears to be unlikely. We further conjecture that in solution the swivel located between myosin subfragments 1 and 2 (S-2 and S-1) is due to a locally random conformation of the chains caused by the presence of a proline residue at the point that physically separates the coiled coil from the globular portion of myosin. On attachment of S-1 to actin in the strong binding state, the configurational entropy of the random coil in the swivel region is greatly reduced relative to the case where the ends are free. This produces a spontaneous coil-to-helix transition in the swivel region that causes rotation of S-1 and the translation of actin. Thus, the model predicts that the actin filaments are pushed rather than pulled past the thick filaments by the crossbridges. The specific mechanism of force generation is examined in detail, and a simple statistical mechanical realization of the model is proposed. We find that the model gives a substantial number of qualitative and at times quantitative predictions in accord with experiment, and is particularly appealing in that it provides a simple means of free energy transduction--the well known fact that topological constraints shift the equilibrium between helical and random coil states.  相似文献   

15.
16.
Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg-ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin.  相似文献   

17.
Available high-resolution structures of F-actin, myosin subfragment 1 (S1), and their complex, actin-S1, were used to calculate a 2D x-ray diffraction pattern from skeletal muscle in rigor. Actin sites occupied by myosin heads were chosen using a "principle of minimal elastic distortion energy" so that the 3D actin labeling pattern in the A-band of a sarcomere was determined by a single parameter. Computer calculations demonstrate that the total off-meridional intensity of a layer line does not depend on disorder of the filament lattice. The intensity of the first actin layer A1 line is independent of tilting of the "lever arm" region of the myosin heads. Myosin-based modulation of actin labeling pattern leads not only to the appearance of the myosin and "beating" actin-myosin layer lines in rigor diffraction patterns, but also to changes in the intensities of some actin layer lines compared to random labeling. Results of the modeling were compared to experimental data obtained from small bundles of rabbit muscle fibers. A good fit of the data was obtained without recourse to global parameter search. The approach developed here provides a background for quantitative interpretation of the x-ray diffraction data from contracting muscle and understanding structural changes underlying muscle contraction.  相似文献   

18.
In the presence of ATP and absence of Ca2+, muscle crossbridges have either MgATP or MgADP.Pi bound at the active site (S. B. Marston and R. T. Tregear, Nature [Lond.], 235:22:1972). The behavior of these myosin adenosine triphosphate (M.ATP) crossbridges, both in relaxed skinned rabbit psoas and frog semitendinosus fibers, was analyzed. At very low ionic strength, T = 5 degrees C, mu = 20 mM, these crossbridges spend a large fraction of the time attached to actin. In rabbit, the attachment rate constants at low salt are 10(4) - 10(5) s-1, and the detachment rate constants are approximately 10(4) s-1. When ionic strength is increased up to physiological values by addition of 140 mM potassium propionate, the major effect is a weakening of the crossbridge binding constant approximately 30-40-fold. This effect occurs because of a large decrease, approximately 100-fold, in the crossbridge attachment rate constants. The detachment rate constants decrease only 2-3-fold. The effect of ionic strength on crossbridge binding in the fiber is very similar to the effect of ionic strength on the binding of myosin subfragment-1 to unregulated actin in solution. Thus, the effect of increasing ionic strength in fibers appears to be a direct effect on crossbridge binding rather than an effect on troponin-tropomyosin. The finding that crossbridges with ATP bound at the active site can and do attach to actin over a wide range of ionic strengths strongly suggests that troponin-tropomyosin keeps a muscle relaxed by blocking a step subsequent to crossbridge attachment. Thus, rather than troponin-tropomyosin serving to keep a muscle relaxed by inhibiting attachment, it seems quite possible that the main way in which troponin-tropomyosin regulates muscle activity is by preventing the weakly-binding relaxed crossbridges from going on through the crossbridge cycle into more strongly-binding states.  相似文献   

19.
20.
Several atomic models of the actomyosin interface have been proposed based on the docking together of their component structures using electron microscopy and resonance energy-transfer measurements. Although these models are in approximate agreement in the location of the binding interfaces when myosin is tightly bound to actin, their relationships to molecular docking simulations based on computational free-energy calculations are investigated here. Both rigid-docking and flexible-docking conformational search strategies were used to identify free-energy minima at the interfaces between atomic models of myosin and actin. These results suggest that the docking model produced by resonance energy-transfer data is closer to a free-energy minimum at the interface than are the available atomic models based on electron microscopy. The conformational searches were performed using both scallop and chicken skeletal muscle myosins and identified similarly oriented actin-binding interfaces that serve to validate that these models are at the global minimum. These results indicate that the existing docking models are close to but not precisely at the lowest-energy initial contact site for strong binding between myosin and actin that should represent an initial contact between the two proteins; therefore, conformational changes are likely to be important during the transition to a strongly bound complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号