首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The cyanobacteria Fremyella diplosiphon 7601 and Synechocystis 6701 were grown in continuous cultures with monochromatic red light (680 nm). The distribution of light energy over photosystem I and II was determined from changes in PS II fluorescence at 685 nm. In both organisms, wavelengths absorbed primarily by chlorophyll a caused the high fluorescent state of PS II (State 1), while wavelengths absorbed by the phycobilisome led to low PS II fluorescence (State 2). Superimposing continuous light 2 on the excitation light yielded State 2 fluorescence patterns for Synechocystis 6701, while F. diplosiphon 7601 showed fluorescence patterns similar to state 1 → 2 transitions and changes in fluorescence yield were related to the intensity of the background light. Some ecological implications of energy (re)distribution in cyanobacterial photosynthesis are discussed.  相似文献   

2.
Photoacoustic detection of oxygen evolution and Emerson enhancement in state 1 and state 2 were compared in a tobacco wild type and mutant (Su/su) deficient in chlorophyll. The mutant shows smaller changes in the distribution of excitation energy between the two photosystems than the wild type. Analysis of Emerson enhancement saturation curves indicates that in the mutant which is deficient in grana partitions and shows less stacking, state 1-state 2 transitions reflect changes in the yield of energy transfer from PS II to PS I (spillover). On the other hand, the wild type containing large grana shows changes in absorption cross-sections of the two photosystems upon state transitions. NaF, a specific phosphatase inhibitor, blocks the transition to state 1, indicating that LHC II phosphorylation has a role in excitation energy regulation in both the mutant as well as the wild type. It is demonstrated that N-ethylmaleimide, a specific sulfhydryl reagent, blocks the transition to state 2, suggesting that a disulfide-sulfhydryl redox couple activates the LHC II kinase in vivo.Abbreviations LHC II light harvesting chlorophyll a/b pigment protein complex of PS II - LHC II-P phosphorylated complex - NEM N-ethylmaleimide  相似文献   

3.
Redox dependent protein phosphorylation in chloroplast thylakoids regulates distribution of excitation energy between the two photosystems of photosynthesis, PS I and PS II. Several thylakoid phosphoproteins are known to be phosphorylated on N-terminal threonine residues exposed to the chloroplast stroma. Phosphorylation of light harvesting complex II (LHC II) on Thr-6 is thought to account for redistribution of light energy from PS II to PS I during the transition to light state 2. Here, we present evidence that a protein tyrosine kinase activity is required for the transition to light state 2. With an immunological approach using antibodies directed specifically towards either phospho-tyrosine or phospho-threonine, we observed that LHC II became phosphorylated on both tyrosine and threonine residues. The specific protein tyrosine kinase inhibitor genistein, at concentrations causing no direct effect on threonine kinase activity, was found to prevent tyrosine phosphorylation of LHC II, the transition to light state 2, and associated threonine phosphorylation of LHC II. Possible reasons for an involvement of tyrosine phosphorylation in light state transitions are proposed and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Different aggregates of LHC II play a very important role in regulating the light absorption and excitation energy transfer of plant. Trimeric LHC II was purified from spinach thylakoid membrane. In order to obtain the dimeric and monomeric LHC II, the trimer was treated with the mixture of 2% OGP and 10 μg/mL PLA2, then loaded onto the sucrose density gradient in the presence of 0.06% triton X-100. The LHC II trimer, dimer and monomer isolated by sucrose density gradient all contained three polypeptides with molecular weight of 29, 28 and 26 kd respectively. The pigment composition showed much difference in the content of Chl b and xanthophyll among three forms of LHC II. To study the light capture and excitation energy transfer in different forms of LHC II, the absorption and fluorescence spectra were analyzed. The results clearly showed that the efficiency of energy absorption and transfer was different in the three kinds of LHC II, the highest for trimeric LHC II, intermediate for dimeric LHC II, and the lowest for monomeric LHC II. It was suggested that there might be a physiological homeostasis of different aggregates of LHC II in plants, which is significant for the plant self-regulating upon exposure to variable light environment.  相似文献   

5.
An isolated light-harvesting pigment-protein complex contains polypeptides which bind chlorophyll a and b. The individual complexes can be purified from detergent-solubilized membranes. The isolated light-harvesting complex, when dialyzed to remove detergents, was examined by freeze-fracture electron microscopy. The material consisted of planar sheets of 80-Å subunits which interacted via an edge-to-edge contact. Addition of cations caused the planar light-harvesting complex sheets to become tightly appressed in multilamellar stacks, with distinct subunits still visible within each lamellar sheet. A transition of particle organization from random to crystalline occurred in parallel with the cation-induced lamellar association. Treatment of the dialyzed light-harvesting complex subunits with low levels of the proteolytic enzyme trypsin removed a 2000 molecular weight segment of the major polypeptide of the light-harvesting complex and blocked all subsequent cation-induced changes in structural organization of the isolated light-harvesting complex lamellar sheets.To gain further evidence for mechanisms of cation effects upon the organization of the light-harvesting complex in native membranes, the light-harvesting complex was incorporated into uncharged (phosphatidylcholine) lipid vesicles. The protein complexes spanned the lipid bilayer and were arranged in either a random pattern or in hexagonal crystalline lattices. Addition of either monovalent or divalent cations to ‘low-salt’ (20 mM monovalent cation) vesicles containing light-harvesting complex caused extensive regions of membrane appression to appear. It is concluded that this cation-induced membrane appression is mediated by surface-exposed segments of the light-harvesting complex since (a) phosphatidylcholine vesicles themselves did not undergo cation-induced aggregation, and (b) mild trypsin digestion of the surface-exposed regions of the light-harvesting complex blocked cation-induced lamellar appression. The particles in the appressed vesicle membranes tended to form long, linear arrays of particles, with occasional mixed quasi-crystalline arrays with an angular displacement near 72°. Surface-mediated interactions among light-harvesting complex subunits of different membranes are, therefore, related to changes in structural organization and interaction of the particles within the lipid phase of the membrane.Numerous previous studies have implicated the involvement of the light-harvesting complex in mediating grana stocking in intact chloroplast membranes. The data presented herein provide a simulation of the membrane appression phenomena using a single class of chloroplast-derived membrane subunits. The data demonstrate that specific surface-localized regions of the light-harvesting complex are involved in membrane-membrane interactions.  相似文献   

6.
Light-harvesting pigment-protein complexes arrayed in the thylakoid membrane serve as antenna to capture light energy and deliver it to photosynthetic reaction centers. The antenna complex of photosystem II (LHC II) is the most abundant pigment-protein complex in green plants. LHC II contains a set of polypeptides encoded by nuclear genes belonging to Lhcb family, of which, LHCB1, LHCB2 and LHCB3, encoded by Lhcb13, assemble to form heterotrimer on thylakoid membrane. The LHC II tr…  相似文献   

7.
Using non-denaturing isoelectric focusing in polyacrylamide vertical slab gel, we have purified to homogeneity three trimeric subcomplexes of LHC II from Arabidopsis thylakoid membranes. The polypeptide composition of the subcomplexes were studied by immunoblotting. Our results indicate the existence in vivo of LHC II heterotrimers containing Lhcb1, Lhcb2 and Lhcb3 gene products.  相似文献   

8.
The formation of the lateral distribution of the major antenna complex of photosystem II (LHCIIb) between the granal and stromal lamellae was studied. Specifically, the localization of the insertion and the assembly of the precursor of the apoprotein of LHCIIb (pLHCP) were studied with isolated thylakoids. After insertion of pLHCP into isolated thylakoids, fractionation of the latter into granal and stromal lamellar was performed. At 25 °C most of the precursor was located in the granal lamellae, although both highly purified granal and stromal lamellar fractions demonstrated a similar capability to insert pLHCP. When the insertion reaction to the thylakoids was performed at 10 °C, followed by their separation into stromal and granal lamellae, the labelled pLHCP was localized in the stromal ones. To examine whether pLHCP inserts into both granal and stromal lamellae, or preferentially into stromal lamellae and subsequently migrating to granal lamellae, a chase experiment was performed. Insertion of pLHCP at 10 °C was followed by chase of the radioactive precursor with excess of non-radioactive pLHCP at 25 °C. From the results presented it is evident that the level of pLHCP in stromal lamellae was gradually reduced, while it gradually accumulated in the granal lamellae. Furthermore, the pLHCP in the stromal lamellae was found to be in a free form, while after migrating to the granal lamellae it assembled into the pigmented LHCIIb.  相似文献   

9.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

10.
In Arabidopsis thaliana, the D-subunit of photosystem I (PSI-D) is encoded by two functional genes, PsaD1 and PsaD2, which are highly homologous. Knock-out alleles for each of the loci have been identified by a combination of forward and reverse genetics. The double mutant psad1-1 psad2-1 is seedling-lethal, high-chlorophyll-fluorescent and deficient for all tested PSI subunits, indicating that PSI-D is essential for photosynthesis. In addition, psad1-1 psad2-1 plants show a defect in the accumulation of thylakoid multiprotein complexes other than PSI. Of the single-gene mutations, psad2 plants behave like wild-type (WT) plants, whereas psad1-1 markedly affects the accumulation of PsaD mRNA and protein, and photosynthetic electron flow. Additional effects of the psad1-1 mutation include a decrease in growth rate under greenhouse conditions and downregulation of the mRNA expression of most genes involved in the light phase of photosynthesis. In the same mutant, a marked decrease in the levels of PSI and PSII polypeptides is evident, as well as a light-green leaf coloration and increased photosensitivity. Increased dosage of PsaD2 in the psad1-1 background restores the WT phenotype, indicating that PSI-D1 and PSI-D2 have redundant functions.  相似文献   

11.
Tobacco plants were subjected to long-term CO2 deficit. The stress caused photoinhibition of Photosystem (PS) II photochemistry and the aggregation of the light-harvesting complex of PS II (LHC II). The aggregation was shown by the appearance of the characteristic band at 698–700 nm (F699) in 77 K fluorescence emission spectra. LHC II aggregates are considered to quench fluorescence and, therefore, the fluorescence yield was determined to verify their quenching capability. PS II photochemistry, measured as FV/FM, was largely depressed during first 4 days of the stress. Unexpectedly, the total fluorescence yield increased in this period. Fitting of emission spectra by Gaussian components approximating emission bands of LHC II, PS II core, PS I and F699 revealed that mainly the bands at 680 and 699 nm, representing emission of LHC II aggregates, were responsible for the increase of the fluorescence yield. This shows an interruption of the excitation energy transfer between LHC II and both photosystems and, thus, a physical disconnection of LHC II from photosystems. PS II and PS I emissions were not quenched in this period. Therefore, it was concluded that these LHC II aggregates were accumulated out of PS II antenna, and, thus they cannot be involved in dumping of excess excitation. The total fluorescence yield turned to decrease only after the large depression of PS II photochemistry, when LHC II aggregation was considerably speeded up and the fluorescence yields of PS I and II turned to decline.  相似文献   

12.
Photosystem II plays an especially important role in the response of photosynthesis in higher plants to environmental perturbations and stresses. The relationship between photosystem II and photosynthetic CO2 assimilation is examined and factors identified that may modulate photosystem II activity in vivo. Particular attention is given to non-photochemical quenching of excitation energy, photoinhibition, state transitions, protein phosphorylation and biogenesis of photosystem II.  相似文献   

13.
We investigated the effect of photosynthetic electron transport and of the photosystem II (PSII) chlorophyll (Chl) antenna size on the rate of PSII photoinhibitory damage. To modulate the rate of photosynthesis and the light-harvesting capacity in the unicellular chlorophyte Dunaliella salina Teod., we varied the amount of inorganic carbon in the culture medium. Cells were grown under high irradiance either with a limiting supply of inorganic carbon, provided by an initial concentration of 25 mM NaHCO3, or with supplemental CO2 bubbled in the form of 3% CO2 in air. The NaHCO3-grown cells displayed slow rates of photosynthesis and had a small PSII light-harvesting Chl antenna size (60 Chl molecules). The half-time of PSII photodamage was 40 min. When switched to supplemental CO2 conditions, the rate of photodamage was retarded to a t1/2 = 70 min. Conversely, CO2-supplemented cells displayed faster rates of photosynthesis and a larger PSII light-harvesting Chl antenna size (500 Chl molecules). They also showed a rate of photodamage with t1/2 = 40 min. When depleted of CO2, the rate of photodamage was accelerated (t1/2  = 20 min). These results indicate that the in-vivo susceptibility to photodamage is modulated by the rate of forward electron transport through PSII. Moreover, a large Chl antenna size enhances the rate of light absorption and photodamage and, therefore, counters the mitigating effect of forward electron transport. We propose that under steady-state photosynthesis, the rate of light absorption (determined by incident light intensity and PS Chl antenna size) and the rate of forward electron transport (determined by CO2 availability) modulate the oxidation/reduction state of the primary PSII acceptor QA, which in turn defines the low/high probability for photodamage in the PSII reaction center. Received: 14 August 1997 / Accepted: 26 September 1997  相似文献   

14.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS IIα and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS IIα centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS IIα component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS IIα contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS IIα and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS IIα and PS IIβ to the fluorescence induction kinetics. PS IIα characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

15.
To examine the effect of abscisic acid (ABA) on the photo‐induced inactivation of the photosystem II (PSII) complex, a suspension culture of Chlamydomonas reinhardtii was treated with ABA for 24 h in darkness and then, after removal of ABA, the cells were exposed to strong light at a photon flux density of 2000 μ mol m ? 2 s ? 1 at various temperatures. The activity of PSII, as estimated in terms of chlorophyll fluorescence and the evolution of oxygen, decreased significantly during the exposure of cells to the strong light, and the extent of the photo‐induced decrease in PSII activity was much greater at lower temperatures. Irrespective of temperature, the decrease in PSII activity in ABA‐treated cells was significantly smaller than that in control cells. Moreover, the recovery of PSII activity from the photo‐inactivated state in ABA‐treated cells was significantly faster than that in control cells. The recovery of PSII activity in both ABA‐treated and control cells was almost entirely prevented by the presence of chloramphenicol. These results indicate that ABA protects the PSII complex in C. reinhardtii against photo‐induced inactivation by accelerating the recovery of this complex.  相似文献   

16.
Aggregation of photosynthetic light-harvesting complexes strongly influences their spectroscopic properties. Fluorescence yield and excited state lifetimes of the main light-harvesting complex (LHC II) of higher plants strongly depend on its aggregation state. Detergents are commonly used to solubilize membrane proteins and/or to circumvent their aggregation in aqueous environments. Nonlinear polarization spectroscopy in the frequency domain (NLPF) was performed with LHC II over a wide concentration range of the mild detergent n-dodecyl β-d-maltoside (β-DM). Additionally, conventional absorption-, fluorescence- and circular dichroism-spectra were measured. The results indicate that: (i) conventional spectroscopic techniques are not well suited to investigate aggregation effects. NLPF provides a novel approach to overcome this problem: NLPF spectra display dramatic alterations upon even minor β-DM concentration changes. (ii) Commonly used detergent concentrations (around or slightly above the critical micellar concentration) apparently do not lead to complete trimerization of LHC II. A long-wavelength species in the NLPF spectra (peaking at about 685 nm), indicative of residual aggregation, persists up to DM-concentrations of 0.06%. (iii) High-resolution NLPF spectra indicate the existence of a species with a considerably shortened excited state lifetime. (iv) No indication of denaturation was found even at the highest β-DM concentrations used. (v) A specific change in interaction between certain chlorophyll(s) b and a xanthophyll molecule, probably neoxanthin, was detected upon aggregation as well as at higher β-DM concentrations. The results are discussed with respect to the still elusive mechanism of nonradiative dissipation of excess excitation energy in the antenna system.  相似文献   

17.
The obligate shade plant, Tradescantia albiflora Kunth grown at 50 mol photons · m–2 s–1 and Pisum sativum L. acclimated to two photon fluence rates, 50 and 300 mol · m–2 · s–1, were exposed to photoinhibitory light conditions of 1700 mol · m–2 · s–1 for 4 h at 22° C. Photosynthesis was assayed by measurement of CO2-saturated O2 evolution, and photosystem II (PSII) was assayed using modulated chlorophyll fluorescence and flash-yield determinations of functional reaction centres. Tradescantia was most sensitive to photoinhibition, while pea grown at 300 mol · m–2 · s–1 was most resistant, with pea grown at 50 mol · m–2 · s–1 showing an intermediate sensitivity. A very good correlation was found between the decrease of functional PSII reaction centres and both the inhibition of photosynthesis and PSII photochemistry. Photoinhibition caused a decline in the maximum quantum yield for PSII electron transport as determined by the product of photochemical quenching (qp) and the yield of open PSII reaction centres as given by the steady-state fluorescence ratio, FvFm, according to Genty et al. (1989, Biochim. Biophys. Acta 990, 81–92). The decrease in the quantum yield for PSII electron transport was fully accounted for by a decrease in FvFm, since qp at a given photon fluence rate was similar for photoinhibited and noninhibited plants. Under lightsaturating conditions, the quantum yield of PSII electron transport was similar in photoinhibited and noninhibited plants. The data give support for the view that photoinhibition of the reaction centres of PSII represents a stable, long-term, down-regulation of photochemistry, which occurs in plants under sustained high-light conditions, and replaces part of the regulation usually exerted by the transthylakoid pH gradient. Furthermore, by investigating the susceptibility of differently lightacclimated sun and shade species to photoinhibition in relation to qp, i.e. the fraction of open-to-closed PSII reaction centres, we also show that irrespective of light acclimation, plants become susceptible to photoinhibition when the majority of their PSII reaction centres are still open (i.e. primary quinone acceptor oxidized). Photoinhibition appears to be an unavoidable consequence of PSII function when light causes sustained closure of more than 40% of PSII reaction centres.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in darkand light-acclimated leaves, respectively - Fv variable fluorescence - (Fm-Fo) under steady-state light con-ditions - Fs steady-state fluorescence in light - QA the primary,stable quinone acceptor of PSII - qNe non-photochemical quench-ing of fluorescence due to high energy state - (pH); qNi non-photochemical quenching of fluorescence due to photoinhibition - qp photochemical quenching of fluorescence To whom correspondence should be addressedThis work was supported by the Swedish Natural Science Research Council (G.Ö.) and the award of a National Research Fellowship to J.M.A and W.S.C. We thank Dr. Paul Kriedemann, Division of Forestry and Forest Products, CSIRO, Canberra, Australia, for helpful discussions.  相似文献   

18.
Extraction of the Mn-cluster from photosystem II (PS II) inhibits the main bands of thermoluminescence and induces a new AT-band at –20°C. This band is attributed to the charge recombination between acceptor QA and a redoxactive histidine residue on the donor side of PS II. The effect of Mn(II) and Fe(II) cations as well as the artificial donors diphenylcarbazide and hydroxylamine on the AT-band of thermoluminescence was studied to elucidate the role of the redoxactive His residue in binding to the Mn(II) and Fe(II). At the Mn/PS II reaction center (RC) ratio of 90 : 1 and Fe/PS II RC ratio of 120 : 1, treatment with Mn(II) and Fe(II) causes only 60% inhibition of the AT-band. Preliminary exposure of Mn-depleted PS II preparations to light in the presence of Mn(II) and Fe(II) causes binding of the cations to the high-affinity Mn-binding site, thereby inhibiting oxidation of the His residue involved in the AT -band formation. The efficiency of the AT-band quenching induced by diphenylcarbazide and hydroxylamine is almost an order of magnitude higher than the quenching efficiency of Mn(II) and Fe(II). Our results suggest that the redox-active His is not a ligand of the high-affinity site and does not participate in the electron transport from Mn(II) and Fe(II) to YZ . The concentration dependences of the AT-band inhibition by Mn(II) and Fe(II) coincide with each other, thereby implying specific interaction of Fe(II) with the donor side of PS II.  相似文献   

19.
The recent finding of a transition state with a significantly lower barrier than previously found, has made the mechanism for O-O bond formation in photosystem II much clearer. The full mechanism can be described in the following way. Electrons and protons are ejected from the oxygen-evolving complex (OEC) in an alternating fashion, avoiding unnecessary build-up of charge. The S0-S1 and S1-S2 transitions are quite exergonic, while the S2-S3 transition is only weakly exergonic. The strong endergonic S3-S4 transition is a key step in the mechanism in which an oxygen radical is produced, held by the dangling manganese outside the Mn3Ca cube. The O-O bond formation in the S4-state occurs by an attack of the oxygen radical on a bridging oxo ligand in the cube. The mechanism explains the presence of both a cube with bridging oxo ligands and a dangling manganese. Optimal orbital overlap puts further constraints on the structure of the OEC. An alternating spin alignment is necessary for a low barrier. The computed rate-limiting barrier of 14.7 kcal mol(-1) is in good agreement with experiments.  相似文献   

20.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 degrees C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing "activity gels". Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being "self-digested", also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 degrees C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg(2+), and inhibited by Zn(2+), Cd(2+), EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing "activity gels" or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号