首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monospecific polyclonal antibodies have been raised against synthetic peptides derived from the primary sequences from different plant light-harvesting Chl a/b-binding (LHC) proteins. Together with other monospecific antibodies, these were used to quantify the levels of the 10 different LHC proteins in wild-type and chlorina f2 barley (Hordeum vulgare L.), grown under normal and intermittent light (ImL). Chlorina f2, grown under normal light, lacked Lhcb1 (type I LHC II) and Lhcb6 (CP24) and had reduced amounts of Lhcb2, Lhcb3 (types II and III LHC II), and Lhcb4 (CP 29). Chlorina f2 grown under ImL lacked all LHC proteins, whereas wild-type ImL plants contained Lhcb5 (CP 26) and a small amount of Lhcb2. The chlorina f2 ImL thylakoids were organized in large parallel arrays, but wild-type ImL thylakoids had appressed regions, indicating a possible role for Lhcb5 in grana stacking. Chlorina f2 grown under ImL contained considerable amounts of violaxanthin (2-3/reaction center), representing a pool of phototransformable xanthophyll cycle pigments not associated with LHC proteins. Chlorina f2 and the plants grown under ImL also contained early light-induced proteins (ELIPs) as monitored by western blotting. The levels of both ELIPs and xanthophyll cycle pigments increased during a 1 h of high light treatment, without accumulation of LHC proteins. These data are consistent with the hypothesis that ELIPs are pigment-binding proteins, and we suggest that ELIPs bind photoconvertible xanthophylls and replace "normal" LHC proteins under conditions of light stress.  相似文献   

2.
3.
The Lhcb gene family in green plants encodes several light-harvesting Chl a/b-binding (LHC) proteins that collect and transfer light energy to the reaction centers of PSII. We comprehensively characterized the Lhcb gene family in the unicellular green alga, Chlamydomonas reinhardtii, using the expressed sequence tag (EST) databases. A total of 699 among over 15,000 ESTs related to the Lhcb genes were assigned to eight, including four new, genes that we isolated and sequenced here. A sequence comparison revealed that six of the Lhcb genes from C. reinhardtii correspond to the major LHC (LHCII) proteins from higher plants, and that the other two genes (Lhcb4 and Lhcb5) correspond to the minor LHC proteins (CP29 and CP26). No ESTs corresponding to another minor LHC protein (CP24) were found. The six LHCII proteins in C. reinhardtii cannot be assigned to any of the three types proposed for higher plants (Lhcb1-Lhcb3), but were classified as follows: Type I is encoded by LhcII-1.1, LhcII-1.2 and LhcII-1.3, and Types II, III and IV are encoded by LhcII-2, LhcII-3 and LhcII-4, respectively. These findings suggest that the ancestral LHC protein diverged into LHCII, CP29 and CP26 before, and that LHCII diverged into multiple types after the phylogenetic separation of green algae and higher plants.  相似文献   

4.
The major light-harvesting complex (LHC IIb) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Multiple isoforms of the protein bind chlorophyll and xanthophyll chromophores, but it is commonly believed that the pigment-binding properties of different LHC IIb complexes are conserved within and between species. We have investigated the structure and function of different LHC IIb complexes isolated from Arabidopsis thaliana grown under different light conditions. LHC IIb isolated from low light-grown plants shows increased amounts of the Lhcb2 gene product, increased binding of chlorophyll a, and altered energy transfer characteristics. We suggest that Lhcb2 specifically binds at least one additional chlorophyll a compared to the Lhcb1 gene product, and that differences in the functioning of LHC IIb from high and low light-grown plants are a direct consequence of the change in polypeptide composition. We show that changes in LHC IIb composition are accompanied by changes in photosynthetic function in vivo and discuss the possible functional significance of LHC IIb heterogeneity.  相似文献   

5.
Using non-denaturing isoelectric focusing in polyacrylamide vertical slab gel, we have purified to homogeneity three trimeric subcomplexes of LHC II from Arabidopsis thylakoid membranes. The polypeptide composition of the subcomplexes were studied by immunoblotting. Our results indicate the existence in vivo of LHC II heterotrimers containing Lhcb1, Lhcb2 and Lhcb3 gene products.  相似文献   

6.
Twenty-three chlorina (clo) mutants from the barley mutant collection of the Carlsberg Laboratory, Copenhagen, were tested for the presence of the four light-harvesting chlorophyll (Chl) a/b-binding proteins (LHC) of Photosystem I (Lhca1-4) and the PS II antenna proteins Lhcb1-3 (LHC II), Lhcb4-6 (CP29, CP26, CP24) and PsbS (CP22) using monospecific and monoclonal antibodies. Mutants allelic to barley mutant clo-f2, impaired in Chl b synthesis, provided evidence that Lhca4, Lhcb1 and Lhcb6 are unstable in the absence of Chl b, and the accumulation of Lhcb2, Lhcb3 and Lhcb4 is also impaired. Mutants at the locus chlorina-a (clo-a117, clo-a126 and clo-a134) lack or have only trace amounts of Lhca1, Lhca4, Lhcb1 and Lhcb3, whereas a mutant at the locus chlorina-b (clo-b125) had reduced amounts of all Lhca proteins. These two mutations could have an effect in protein import or assembly. Evidence is presented that Lhcb5 is the innermost LHC protein of PS II, and that Lhca1 and Lhca4, which have been supposed to be intimately associated in the LHCI-730 complex, can accumulate independently of each other. 77 K fluorescence emission spectra taken from leaves of clo-f2 101, clo-a126 and clo-b125 indicate that chlorophyll(s) emitting at 742 nm are coupled to the presence of Lhca4 that is bound to the reaction centre, and those emitting around 730 nm are located on Lhca1.  相似文献   

7.
Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.  相似文献   

8.
The chlorina-f2 mutant of barley (Hordeum vulgare L.) contains no chlorophyll b in its light-harvesting antenna, whereas the chlorina-103 mutant contains approximately 10% of the chlorophyll b found in wild-type. The absolute chlorophyll antenna size for Photosystem-II in wild-type, chlorina-103 and chlorina-f2 mutant was 250, 58 and 50 chlorophyll molecules, respectively. The absolute chlorophyll antenna size for Photosystem-I in wild-type, chlorina-103 and chlorina-f2 mutant was 210, 137 and 150 chlorophyll molecules, respoectively. In spite of the smaller PS I antenna size in the chlorina mutants, immunochemical analysis showed the presence of polypeptide components of the LHC-I auxiliary antenna with molecular masses of 25, 19.5 and 19 kDa. The chlorophyll a-b-binding LHC-II auxiliary antenna of PS II contained five polypeptide subunits in wild-type barley, termed a, b, c, d and e, with molecular masses of 30, 28, 27, 24 and 21 kDa, respectively. The polypeptide composition of the LHC-II auxiliary antenna of PS II was found to be identical in the two mutants, with only the 24 kDa subunit d present at an equal copy number per PS II in each of the mutants and in the wild-type barley. This d subunit assembles stably in the thylakoid membrane even in the absence of chlorophyll b and exhibits flexibility in its complement of bound chlorophylls. We suggest that polypeptide subunit d binds most of the chlorophyll associated with the residual PS II antenna in the chlorina mutants and that is proximal to the PS II-core complex.Abbreviations CP chlorophyll-protein - LHC the chlorophyll a-b binding light-harvesting complex - LHC-II subunit a the Lhcb4/5 gene product - subunit b the Lhcb1 gene product - subunit c Lhcb2 the gene product - subunit d the Lhcb3 gene product - subunit e the Lhcb6 gene product - PMSF phenylmethane sulphonyl fluoride - RC reaction center - QA the primary quinone electron acceptor of Photosystem-II - P700 the reaction center of PS I  相似文献   

9.
A complete ferredoxin (Fd) cDNA clone was isolated from potato (Solanum tuberosum L. cv Desiree) leaves. By molecular and immunoblot analysis, the gene was identified as the leaf-specific Fd isoform I. Transgenic potato plants were constructed by introducing the homologous potato fed 1 cDNA clone as an antisense construct under the control of the constitutive cauliflower mosaic virus 35S promoter. Stable antisense lines with Fd contents between 40% and 80% of the wild-type level were selected by northern- and western-blot analysis. In short-term experiments, the distribution of electrons toward their stromal acceptors was altered in the mutant plants. Cyclic electron transport, as determined by the quantum yields of photosystems I and II, was enhanced. The CO2 assimilation rate was decreased, but depending on the remaining Fd content, some lines showed photoinhibition. The leaf protein content remained largely constant, but the antisense plants had a lower total chlorophyll content per unit leaf area and an increased chlorophyll a/b ratio. In the antisense plants, the redox state of the quinone acceptor A in photosystem II (QA) was more reduced than that of the wild-type plants under all experimental conditions. Because the plants with lower Fd amounts reacted as if they were grown under a higher light intensity, the possibility that the altered chloroplast redox state affects light acclimation is discussed.  相似文献   

10.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

11.
12.
Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b6f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.  相似文献   

13.
Light‐harvesting complex II (LHCII) contains three highly homologous chlorophyll‐a/b‐binding proteins (Lhcb1, Lhcb2 and Lhcb3), which can be assembled into both homo‐ and heterotrimers. Lhcb1 and Lhcb2 are reversibly phosphorylated by the action of STN7 kinase and PPH1/TAP38 phosphatase in the so‐called state‐transition process. We have developed antibodies that are specific for the phosphorylated forms of Lhcb1 and Lhcb2. We found that Lhcb2 is more rapidly phosphorylated than Lhcb1: 10 sec of ‘state 2 light’ results in Lhcb2 phosphorylation to 30% of the maximum level. Phosphorylated and non‐phosphorylated forms of the proteins showed no difference in electrophoretic mobility and dephosphorylation kinetics did not differ between the two proteins. In state 2, most of the phosphorylated forms of Lhcb1 and Lhcb2 were present in super‐ and mega‐complexes that comprised both photosystem (PS)I and PSII, and the state 2‐specific PSI–LHCII complex was highly enriched in the phosphorylated forms of Lhcb2. Our results imply distinct and specific roles for Lhcb1 and Lhcb2 in the regulation of photosynthetic light harvesting.  相似文献   

14.
A genetic approach has been adopted to investigate the organization of the light-harvesting proteins in the photosystem II (PSII) complex in plants. PSII membrane fragments were prepared from wild-type Arabidopis thaliana and plants expressing antisense constructs to Lhcb4 and Lhcb5 genes, lacking CP29 and CP26, respectively (Andersson et al. (2001) Plant Cell 13, 1193-1204). Ordered PS II arrays and PS II supercomplexes were isolated from the membranes of plants lacking CP26 but could not be prepared from those lacking CP29. Membranes and supercomplexes lacking CP26 were less stable than those prepared from the wild type. Transmission electron microscopy aided by single-particle image analysis was applied to the ordered arrays and the isolated PSII complexes. The difference between the images obtained from wild type and antisense plants showed the location of CP26 to be near CP43 and one of the light-harvesting complex trimers. Therefore, the location of the CP26 within PSII was directly established for the first time, and the location of the CP29 complex was determined by elimination. Alterations in the packing of the PSII complexes in the thylakoid membrane also resulted from the absence of CP26. The minor light-harvesting complexes each have a unique location and important roles in the stabilization of the oligomeric PSII structure.  相似文献   

15.
The chlorophyll (Chl) a-b light harvesting complex II (LHC II)contains more than 80% of the light-harvesting pigments of photosystemII (PS II) in chloroplasts. The supramolecular assembly andfunction of this auxiliary antenna system was investigated inChi b-deficient and Chi b-less mutant chloroplasts from soybeanand barley plants, and in their wild-type counterparts. Fourdistinct LHC II polypeptides were resolved by SDS-PAGE (subunitsa, b, c and d), having apparent molecular masses of 29, 28,27.2 and 26.8 kDa, respectively. The analysis of LHC II subunitcomposition in different developmental stages of the PS II unitin soybean (3>Chla/Chlbb>6), indicated the associationof specific subunits with the LHC H-inner and LHC II-peripheralin the chloroplast. The amount of subunit a in PS II was constantover a broad range of Chl a/Chl b ratios, suggesting that thissubunit is closely associated with the PS II-core complex. Subunitd also appeared to be constant over a wide range of Chl a/Chlb ratios, suggesting close association with the LHC II-inner.The PS II content in subunits b and c increased with the PSII antenna development in soybean but the ratio of b/c remainedconstant in all developmental stages and equal to 2 :1. Subunita was present in the Chl b-less chlorina f2 mutant of barleygrown under continuous illumination but was absent under intermittentillumination. The results suggest that each subunit binds 13-15Chl molecules. A working hypothesis is presented on the PS IIantenna development and LHC II subunit composition in soybeanchloroplasts. (Received October 11, 1988; Accepted January 19, 1989)  相似文献   

16.
The main trimeric light-harvesting complex of higher plants (LHCII) consists of three different Lhcb proteins (Lhcb1-3). We show that Arabidopsis thaliana T-DNA knockout plants lacking Lhcb3 (koLhcb3) compensate for the lack of Lhcb3 by producing increased amounts of Lhcb1 and Lhcb2. As in wild-type plants, LHCII-photosystem II (PSII) supercomplexes were present in Lhcb3 knockout plants (koLhcb3), and preservation of the LHCII trimers (M trimers) indicates that the Lhcb3 in M trimers has been replaced by Lhcb1 and/or Lhcb2. However, the rotational position of the M LHCII trimer was altered, suggesting that the Lhcb3 subunit affects the macrostructural arrangement of the LHCII antenna. The absence of Lhcb3 did not result in any significant alteration in PSII efficiency or qE type of nonphotochemical quenching, but the rate of transition from State 1 to State 2 was increased in koLhcb3, although the final extent of state transition was unchanged. The level of phosphorylation of LHCII was increased in the koLhcb3 plants compared with wild-type plants in both State 1 and State 2. The relative increase in phosphorylation upon transition from State 1 to State 2 was also significantly higher in koLhcb3. It is suggested that the main function of Lhcb3 is to modulate the rate of state transitions.  相似文献   

17.
Non-photochemical quenching (NPQ) of excess absorbed light energy is a fundamental process that regulates photosynthetic light harvesting in higher plants. Among several proposed NPQ mechanisms, aggregation-dependent quenching (ADQ) and charge transfer quenching have received the most attention. In vitro spectroscopic features of both mechanisms correlate with very similar signals detected in more intact systems and in vivo, where full NPQ can be observed. A major difference between the models is the proposed quenching site, which is predominantly the major trimeric light-harvesting complex II in ADQ and exclusively monomeric Lhcb proteins in charge transfer quenching. Here, we studied ADQ in both monomeric and trimeric Lhcb proteins, investigating the activities of each antenna subunit and their dependence on zeaxanthin, a major modulator of NPQ in vivo. We found that monomeric Lhcb proteins undergo stronger quenching than light-harvesting complex II during aggregation and that this is enhanced by binding to zeaxanthin, as occurs during NPQ in vivo. Finally, the analysis of Lhcb5 mutants showed that chlorophyll 612 and 613, in close contact with lutein bound at site L1, are important facilitators of ADQ.  相似文献   

18.
19.
The PS II-S protein and the so-called early light-inducible proteins (ELIPs) are homologous to the chlorophyll a/b-binding (Cab) gene products functioning in light-harvesting. The functional significance of these two CAB homologues is not known although they have been considered to bind pigments and in the case of the PS II–S protein this has been experimentally supported. The role of these two proteins does not appear to be light-harvesting but instead they are suggested to play a role as quenchers of free chlorophyll molecules during biogenesis and/or degradation of pigment-binding proteins. Such a role would be essential to eliminate the toxic and damaging effects that can be induced by free chlorophyll in the light. To this end the expression and characteristics of the ELIPs and the PS II–S protein were investigated in spinach leaves acclimating from low to high light intensities. Under these conditions there is a reduction in the antenna size of Photosystem II due to proteolytic digestion of its major chlorophyll a/b-binding protein (LHC II). During this acclimative proteolysis, up to one third of LHC II can be degraded and consequently substantial amounts of chlorophyll molecules will lose their binding sites. Our results reveal that there is a close correlation between ELIP accumulation and the onset of the LHC II degradation as low light-grown spinach leaves are subjected to increased light intensities. In contrast, there was no change in the relative level of the PS II–S protein during the acclimation process. It is concluded that the role for the ELIPs may be related to binding of liberated chlorophyll molecules and quenching of the toxic effects during LHC II degradation. In addition it was shown that in spinach four different ELIP species can be expressed and that they show different accumulation patterns in response to increased light intensities.  相似文献   

20.
Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b(6)f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号