首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthriscus sylvestris (L.) Hoffm., is characteristic of productive habitats, and Festuca ovina of unproductive ones. The two species were grown at steady-state growth with either free access to all nutrients or severe nitrogen limitation. The maximum relative growth rate of the two species was similar-about 0.20 day-1. Root:shoot partitioning at nitrogen limitation differed between the species. A. sylvestris allocated less biomass to fine-roots than at free access and F. ovina allocated more.  相似文献   

2.
Traditional models of chemostat systems looking at interactions between predator, prey and nutrients have used only a single currency, such as energy or nitrogen. In reality, growth of autotrophs and heterotrophs may be limited by various elements, e.g. carbon, nitrogen, phosphorous or iron. In this study we develop a dynamic energy budget model chemostat which has both carbon and nitrogen as currencies, and examine how the dual availability of these elements affects the growth of phytoplankton, trophic transfer to zooplankton, and the resulting stability of the chemostat ecosystem. Both species have two reserve pools to obtain a larger metabolic flexibility with respect to changing external environments. Mineral nitrogen and carbon form the base of the food chain, and they are supplied at a constant rate. In addition, the biota in the chemostat recycle nutrients by means of respiration and excretion, and organic detritus is recycled at a fixed rate. We use numerical bifurcation analysis to assess the model's dynamic behavior. In the model, phytoplankton is nitrogen limited, and nitrogen enrichment can lead to oscillations and multiple stable states. Moreover, we found that recycling has a destabilizing effect on the food chain due to the increased repletion of mineral nutrients. We found that both carbon and nitrogen enrichment stimulate zooplankton growth. Therefore, we conclude that the concept of single-element limitation may not be applicable in an ecosystem context.  相似文献   

3.
The "law of the minimum" (Liebig's law) states that usually one nutrient restricts the maximum quantity of biomass that can be produced within a system, whereas all other nutrients are in excess. This general rule has been applied also to the growth of microorganisms, e.g., by adjusting the relative concentrations of the individual nutrients in growth media such that one of them, in the case of heterotrophic microbes, usually the carbon source, determines the maximum cell density that can be obtained in a culture. However, experimental data demonstrated that growth of microbial cultures can be limited simultaneously by two or more nutrients. These authors reported that during growth of bacteria and yeasts at a constant dilution rate in the chemostat, three distinct growth regimes were recognised as a function of the C:N ratio in the inflowing medium: (1) a clearly carbon-limited regime with the nitrogen source in excess, (2) a transition ("double-nutrient-limited") growth regime where both the carbon and the nitrogen source were below the detection limit, and (3) a clearly nitrogen-limited growth regime with the carbon source in excess. Subsequent calculations suggested that the extension and position of this double-nutrient-limited zone should be strongly dependent on the imposed growth rate: Whereas it is very narrow at high growth rates it should become very broad during slow growth. This pattern as a function of growth rate has now been confirmed for a number of different organisms. In industrial processes, microbial growth is always in some way controlled by the limited availability of nutrients, and limitation of specific nutrients is frequently used to force microbial cultures into a productive physiological state. This article will discuss what the consequences of multiple-nutrient-limited growth are for industrial processes and how the concept might be applied. Specific examples will be given that demonstrate the advantages and the potential of multiple nutrient-limited growth conditions for industrial production processes.  相似文献   

4.
Because the capability of terrestrial ecosystems to fix carbon is constrained by nutrient availability, understanding how nutrients limit plant growth is a key contemporary question. However, what drives nutrient limitations at global scale remains to be clarified. Using global data on plant growth, plant nutritive status, and soil fertility, we investigated to which extent soil parent materials explain nutrient limitations. We found that N limitation was not linked to soil parent materials, but was best explained by climate: ecosystems under harsh (i.e., cold and or dry) climates were more N‐limited than ecosystems under more favourable climates. Contrary to N limitation, P limitation was not driven by climate, but by soil parent materials. The influence of soil parent materials was the result of the tight link between actual P pools of soils and physical–chemical properties (acidity, P richness) of soil parent materials. Some other ground‐related factors (i.e., soil weathering stage, landform) had a noticeable influence on P limitation, but their role appeared to be relatively smaller than that of geology. The relative importance of N limitation versus P limitation was explained by a combination of climate and soil parent material: at global scale, N limitation became prominent with increasing climatic constraints, but this global trend was modulated at lower scales by the effect of parent materials on P limitation, particularly under climates favourable to biological activity. As compared with soil parent materials, atmospheric deposition had only a weak influence on the global distribution of actual nutrient limitation. Our work advances our understanding of the distribution of nutrient limitation at global scale. In particular, it stresses the need to take soil parent materials into account when investigating plant growth response to environment changes.  相似文献   

5.
The light-to-nutrient hypothesis explores how the balance between energy (as light energy) and nutrients (as total phosphorus) shapes aquatic ecosystem structure and process. The balance of energy and nutrients is thought to regulate ecosystem structure and process such that, in a "high" light-to-nutrient environment, bacteria would probably be driven towards phosphorus (P) limitation, whereas, in a "low" light-to-nutrient environment, bacteria would be driven towards carbon (C) limitation. We assessed the growth limitation of bacteria in two reservoirs of the southern U.S.A. using a mortality-corrected dilution-growth approach. We compared the frequency of P and C growth limitation with the intralake variation in the light-to-nutrient environment. As a metric of the light-to-nutrient environment, we used the ratio of the mean light in the surface mixed layer ( I m) to the total phosphorus concentration ( TP ). In each lake, bacterial growth was more often P-limited when the I m :  TP ratio was above the median ratio than below. We believe our data provide the first evidence supporting this aspect of the light-to-nutrient hypothesis.  相似文献   

6.
Laboratory and field measurements of the toxin content in Karenia brevis cells vary by >4‐fold. These differences have been largely attributed to genotypic variations in toxin production among strains. We hypothesized that nutrient limitation of growth rate is equally or more important in controlling the toxicity of K. brevis, as has been documented for other toxic algae. To test this hypothesis, we measured cellular growth rate, chlorophyll a, cellular carbon and nitrogen, cell volume, and brevetoxins in four strains of K. brevis grown in nutrient‐replete and nitrogen (N)‐limited semi‐continuous cultures. N‐limitation resulted in reductions of chlorophyll a, growth rate, volume per cell and nirtogen:carbon (N:C) ratios as well as a two‐fold increase (1%–4% to 5%–9%) in the percentage of cellular carbon present as brevetoxins. The increase in cellular brevetoxin concentrations was consistent among genetically distinct strains. Normalizing brevetoxins to cellular volume instead of per cell eliminated much of the commonly reported toxin variability among strains. These results suggest that genetically linked differences in cellular volume may affect the toxin content of K. brevis cells as much or more than innate genotypic differences in cellular toxin content per unit of biomass. Our data suggest at least some of the >4‐fold difference in toxicity per cell reported from field studies can be explained by limitation by nitrogen or other nutrients and by differences in cell size. The observed increase in brevetoxins in nitrogen limited cells is consistent with the carbon:nutrient balance hypothesis for increases in toxins and other plant defenses under nutrient limitation.  相似文献   

7.
Sommer U  Sommer F  Feuchtmayr H  Hansen T 《Protist》2004,155(3):295-304
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.  相似文献   

8.
营养限制是微生物最常面临的环境胁迫之一。除了在营养物质匮乏的海洋、冰川、沙漠、深层地表等自然环境中,越来越多的人工环境也出现了营养限制的特征,例如各类微污染水体、提标改造的废水生物处理系统等。基质浓度极大地影响着包括细菌在内的许多微生物的生长、代谢及群落结构,最终导致其功能的改变。为了在营养限制条件下维持生存,微生物首先需感知营养供给的减少,其后通过基因、蛋白质、信号分子、代谢产物等对各代谢过程进行全局调控,最后改变基质亲和力、生长速率、运动能力、形态等以适应营养不足。胞内各种信号物质及其触发的响应是微生物应对营养胁迫的关键。本文分别梳理了以细菌为代表的微生物应对碳源、氮源限制时的关键信号物质、受体蛋白/调控过程及响应结果,并分析了碳氮限制响应过程中的相互作用,以期为极端环境微生物的认识、营养限制条件下微生物的应用,尤其是低浓度污染物生物处理、生物监测等领域提供理论基础。  相似文献   

9.
10.
No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.  相似文献   

11.
植物种群更新限制——从种子生产到幼树建成   总被引:8,自引:0,他引:8  
李宁  白冰  鲁长虎 《生态学报》2011,31(21):6624-6632
更新限制是指种子由于各种原因,不能够萌发并生长成幼树。它作为解释生物多样性的理论,一直受到国内外群落生态学家关注。从种源限制、传播限制和建成限制3个角度,对更新限制机制研究进展进行了综述。从种源限制而言,时空因素是影响植物种群更新限制的重要因素,因为植物结实量存在明显时空变化,造成植物更新个体出现明显的时空规律。从传播限制而言,传播数量、距离和食果动物行为均限制植物种群更新。数量上,缺乏有限传播者势必减少传播数量,但如果种子拥有较高质量,则能逃脱数量限制;距离上,植物更新个体显示出明显的Janzen-Connell格局,但传播距离趋向稳定,形成植物种群的进化稳定对策;食果动物行为上,不同传播者对更新贡献存在差异,捕食者直接降低更新,融入两类动物行为的模型更能反映食果动物对更新的限制。从建成限制而言,环境因子制约植物生长。小尺度下,微生境的好坏对于植物幼苗建成至关重要;大尺度下,植物提供较好的广告效应则能摆脱生境限制。将传播者行为、捕食者行为与幼苗的空间分布格局、种子传播机理模型等结合,建立植物更新限制机理模型应是更新限制未来的研究热点。选择稀有种和古老种为主题的长期更新限制研究,为种群恢复提供指导,也是未来重要研究方向。  相似文献   

12.
AIMS: To examine the role of the nutrients on the onset of flocculation in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. For cells grown in chemically defined medium (yeast nitrogen base with glucose) or in rich medium (containing yeast extract, peptone and fermentable sugars: fructose or maltose), the onset of flocculation occurred after the end of exponential respiro-fermentative phase of growth being coincident with the attainment of the lower level of carbon source in the culture medium. Cells, in exponential respiro-fermentative phase of growth, transferred to a glucose-containing medium without nitrogen source, developed a flocculent phenotype, while these carbon source starved cells, in the presence of all other nutrients that support growth, did not flocculate. In addition, cells in exponential phase of growth, under catabolite repression, when transferred to a medium containing 0.2% (w/v) of fermentable sugar (fructose or maltose) or 2% (v/v) ethanol, showed a rapid triggering of flocculation, while when incubated in 2% (v/v) glycerol did not develop a flocculent phenotype. CONCLUSIONS: The onset of flocculation occurs when a low sugar and/or nitrogen concentration is reached in culture media. The triggering of flocculation is an energetic dependent process influenced by the carbon source metabolism. The presence of external nitrogen source is not necessary for developing a flocculent phenotype. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients on the onset of flocculation in NewFlo phenotype yeast strains. This information might be useful to the brewing industry, in the control of yeast flocculation, as the time when the onset of flocculation occurs can determine the fermentation performance and the beer quality.  相似文献   

13.
Mangrove forests are characterized by distinctive tree-height gradientsthat reflect complex spatial, within-stand differences in environmentalfactors,including nutrient dynamics, salinity, and tidal inundation, across narrowgradients. To determine patterns of nutrient limitation and the effects ofnutrient availability on plant growth and within-stand nutrient dynamics, weused a factorial experiment with three nutrient treatment levels (control, N,P)and three zones along a tree-height gradient (fringe, transition, dwarf) onoffshore islands in Belize. Transects were laid out perpendicular to theshoreline across a mangrove forest from a fringe stand along the seaward edge,through a stand of intermediate height, into a dwarf stand in the interior ofthe island. At three sites, three trees were fertilized per zone for 2yr. Although there was spatial variability in response, growth byR. mangle was generally nitrogen (N) -limited in thefringe zone;phosphorus (P) -limited in the dwarf zone; and, N- and/or P-limited in thetransition zone. Phosphorus-resorption efficiency decreased in all three zones,and N-resorption efficiency increased in the dwarf zone in response to Penrichment. The addition of N had no effect on either P or N resorptionefficiencies. Belowground decomposition was increased by P enrichment in allzones, whereas N enrichment had no effect. This study demonstrated thatessential nutrients are not uniformly distributed within mangrove ecosystems;that soil fertility can switch from conditions of N to P limitation acrossnarrow ecotonal gradients; and, that not all ecological processes respondsimilarly to, or are limited by, the same nutrient.  相似文献   

14.
Kisand  Veljo  Tuvikene  Lea  Nõges  Tiina 《Hydrobiologia》2001,457(1-3):187-197
Nutrient (P and N) enrichment experiments in small enclosures (20 l) were carried out to determine P and/or N limitation of bacterioplankton in Lake Võrtsjärv. The specific interest of the study was to test if it is possible to detect nutrient `physiological' or growth (rate) limitation of bacterioplankton and competition for nutrients (N and P) with phytoplankton in generally nutrient rich lake. Thymidine and leucine incorporation; leucine aminopeptidase, -D-glucosidase and alkaline phosphatase activity, total count of bacteria, chlorophyll a concentration and primary production as well as the concentrations of different chemical forms of N and P were followed during 4–5 days of the experiment. To address the question of the interactions between nutrients, bacterio- and phytoplankton, experimental and seasonal data sets were included in the analyses. Phosphorus (P) had a positive effect on bacterioplankton in enclosure experiments in June 1997; no effects of nutrients were found in September 1996, while in May 1996, P affected mainly the phytoplankton. On the seasonal scale, the development of bacterioplankton was connected to primary production, total phosphorus and temperature. In enrichment experiments, bacterioplankton was mainly related with primary productivity but the possible importance of bacterial grazers could be presumed. Thus, no evidence was found for nutrient growth limitation and/or competition for N and/or P, rather bacterioplankton depended on organic food supply originating from phytoplankton.  相似文献   

15.
Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0–10, 10–20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration–though easy and cheap to measure—is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.  相似文献   

16.
17.
Stulen  I.  den Hertog  J. 《Plant Ecology》1993,(1):99-115
This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions during the experiment, the growth phase of the plant, and its morphological characteristics. Under non-limiting conditions of water and nutrients for growth, dry matter partitioning to the root is not changed by CO2 enrichment. The increase in root/shoot ratio, frequently observed under limiting conditions of water and/or nutrients, enables the plant to explore a greater soil volume, and hence acquire more water and nutrients. However, more data on changes in dry matter allocation within the root due to atmospheric CO2 are needed. It is concluded that nitrogen fixation is favored by CO2 enrichment since nodule mass is increased, concomitant with an increase in root length. The papers available so far on the influence of CO2 enrichment on mycorrhizal functioning suggest that carbon allocation to the roots might be increased, but also here more experiments are needed.Abbreviations LAR leaf area ratio - LWR leaf weight ratio - SWR stem weight ratio - RGR relative growth rate - R/S root/shoot - RWR root weight ratio  相似文献   

18.
This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml−1), CuCl2 (1 mM), UV-B (10 min), heat (47 °C), NaCl (6% w/v) and CdCl2 (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.  相似文献   

19.
鄱阳湖湿地两种优势植物叶片C、N、P动态特征   总被引:5,自引:0,他引:5  
郑艳明  尧波  吴琴  胡斌华  胡启武 《生态学报》2013,33(20):6488-6496
2011年2—6月在鄱阳湖南矶湿地国家级自然保护区逐月测定了灰化苔草(Carex cinerascens)、南荻(Triarrhena lutarioriparia)叶片C、N、P含量及其地上生物量,以阐明鄱阳湖湿地优势植物C、N、P含量及化学计量比动态特征与控制因子,探讨湿地养分利用与限制状况。结果表明:1)两种优势植物叶有机碳含量变化范围分别为365.3—386.6 mg/g和352.6—393.2 mg/g,平均值(?标准差)分别为(375.5?17.4) mg/g和(371.7?12.5) mg/g;叶N含量分别为6.96—17.59 mg/g和5.50—20.68 mg/g,平均值分别为(11.35?1.40) mg/g和(11.54?0.84) mg/g;叶P含量变化范围为0.65—2.14 mg/g和0.57—2.25 mg/g,平均含量为(1.56?0.69) mg/g和(1.55?0.68) mg/g。两种植物C:N、C:P、N:P平均值分别为37.65、413.60、9.62和41.05、410.29、9.57,C、N、P及其化学计量比种间差异不显著(P>0.05)。2)气温与地上生物量是N、P及其化学计量比季节变化的主要控制因子,气温和生物量对两种优势植物叶片氮、磷含量的影响要高于对叶有机碳含量的影响。3)植物C:N、C:P与地上生物量变化趋势基本一致,显示N、P养分利用效率随植物的快速生长而提高;根据两种优势植物及土壤N、P含量与化学计量比来判断,研究区植物更多地受氮限制。  相似文献   

20.
1. In order to evaluate limitation of different phytoplankton groups by inorganic nutrients, multiple nutrient enrichment bioassays using the addition of iron (Fe) and the combined addition of nitrogen and phosphorus (NP) were carried out in the north and the south of Lake Tanganyika during the rainy and dry seasons in 2003 and 2004. 2. Nutrient additions resulted in an increase in phytoplankton growth rate relative to control treatments in all experiments. HPLC pigment data and epifluorescence microscopy counts indicated differential stimulation of the dominant phytoplankton groups. Iron additions mainly stimulated prokaryotic picophytoplankton, while enrichments with nitrogen and phosphorus stimulated green algae and in some cases diatoms. Extended incubation (3 days) indicated co‐limitation of Fe and NP, in particular for picocyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号