首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of calcium metabolism in Tetrahymena during the regeneration of cilia evidenced that the process is inhibited by nifedipine and trifluoperazine. This suggests that calcium ions play an important regulatory role in this process. This was confirmed by studies on calcium uptake and efflux which showed that there was a net increase in calcium uptake prior to the reinitiation of motility. The increase coincided with a period of sensitivity to the calcium antagonist TMB-8 and with an increase in the intracellular level of cGMP. The process was also inhibited by neomycin and stimulated by phorbol esters, which suggests that hydrolysis of phosphatidylinositol phosphates may take place as part of the calcium regulatory network during the regeneration of cilia.  相似文献   

2.
A study was made of the interrelationship of serotonin, cAMP, and calcium ions in the regulation of regeneration of cilia by Tetrahymena pyriformis. All these compounds stimulated the regeneration, whereas a blocker of serotonin synthesis, p-chlorophenylalanine, and a calcium chelator, EGTA, inhibited the process. This inhibition could be overcome by the addition of any of the stimulatory compounds. cAMP was also found to be inhibitory at high concentrations. The intracellular concentration of this nucleotide was found to increase during the regeneration, and this increase occurred precociously in the presence of serotonin. It was concluded that serotonin may regulate ciliary regeneration by a mechanism involving cAMP And calcium ions, but that the causal relationships among these compounds still need to be established.  相似文献   

3.
SUMMARY. The accumulation of cadmium from an experimental medium by the freshwater amphipod Gammarus pulex is described.
Much of the uptake is internal as opposed to adsorption on the body surface, and after an apparent saturation of the exoskeleton the hepatopancreas becomes an increasingly important site of cadmium storage. The haemolymph cadmium concentration reaches a high level compared with marine crustaceans, achieving a concentration factor (ratio of internal Cd/ external Cd) of 100 after about 60 h uptake.
The cadmium uptake process is severely inhibited after exposure of experimental animals to 0.5 mM 2:4 Dinitrophenol, indicating the mediation of an active process. This fact together with the negative relationship between cadmium uptake rate and the calcium concentration of the animal suggests that cadmium accumulation by this species may be at least partially accounted for by a process of 'accidental' active cadmium uptake, with cadmium substituting for calcium on a calcium regulatory mechanism.
As yet it has not been possible to establish a true stoichiometric relationship between the two metals. Although calcium influx and cadmium uptake (influx) rates are similar over a wide range of external concentrations, calcium influx is clearly inhibited by a low external ratio of cadmium to calcium. This indicates that the relationship between the two metals is far from an equimolar one and the possibility of non-competitive inhibition of calcium influx by cadmium cannot be eliminated.  相似文献   

4.
CILIA REGENERATION IN TETRAHYMENA AND ITS INHIBITION BY COLCHICINE   总被引:27,自引:18,他引:9       下载免费PDF全文
The cilia of Tetrahymena were amputated by the use of a procedure in which the cells remained viable and regenerated cilia. Deciliated cells were nonmotile, and cilia regeneration was assessed by scoring the percentage of motile cells at intervals following deciliation. After a 30-min lag, the deciliated cells rapidly recovered motility until more than 90% of the cells were motile at 70 min after amputation. Cycloheximide inhibited both protein synthesis and cilia regeneration. This indicated that cilia formation in Tetrahymena was dependent on protein synthesis after amputation. Conversely, colchicine was found to inhibit cilia regeneration without affecting either RNA or protein synthesis. This observation suggested the action of colchicine to be an interference with the assembly of ciliary subunit proteins. The finding that colchicine binds to microtubule protein subunits isolated from cilia and flagella (13) supports this possibility. The potential of the colchicine-blocked cilia-regenerating system in Tetrahymena for studying the assembly of microtubule protein subunits during cilia formation and for isolating ciliary precursor proteins is discussed.  相似文献   

5.
The intimate association of the Golgi apparatus with cilia suggests a functional alliance. To explore the relationship between the synthesis and processing of membrane constituents and the turnover or regeneration of cilia, parallel cultures of gastrula-stage sea urchin embryos were pulse-chase labeled with (3)H-leucine in the presence of monensin, brefeldin A, or colchicine. Steady-state labeled cilia were isolated, and the embryos were allowed to regenerate cilia, which were then isolated after the equivalent of two normal regeneration times. Regeneration was absent in colchicine, minimal in monensin, and inhibited about 40% by brefeldin A. Both monensin and brefeldin A effectively inhibited the post-translational processing of prominent phosphatidylinositoylated and palmitoylated membrane proteins and the axoneme-associated transmembrane Spec3 protein, yet most other membrane plus matrix and 9+2 axonemal proteins were labeled to levels indistinguishable from untreated controls. However, total protein analysis of the membrane plus matrix fractions showed a substantial increase in glycoproteins and the calsequestrin-like protein ECaSt/PDI after treatment at steady-state with all three inhibitors and after regeneration in brefeldin A. Other constituents of this compartment, such as membrane-associated tubulin, calmodulin, and a 53-kDa calcium-binding protein, were unchanged. Therefore, inhibition of Golgi function via three different mechanisms left 9+2 protein turnover undiminished but resulted in an accumulation, in the cilium, of already-processed membrane pool constituents and a normally ER-resident protein. A disproportionate elevation of HSP70 suggests that a novel stress response may be involved in inhibiting ciliary regeneration or promoting glycoprotein augmentation.  相似文献   

6.
Thapsigargin is a natural product that specifically inhibits all known SERCA calcium pumps with high affinity. We investigated the effects of thapsigargin on cardiac sarcoplasmic reticulum (SR) by measuring the oxalate-supported calcium uptake rate in the unfractionated homogenate and in the isolated SR fraction. The uptake rate in both the isolated SR and unfractionated homogenate are stimulated about two-fold by preincubation with high concentrations of ryanodine, which closes the SR efflux channel. Thapsigargin stoichiometrically and completely inhibited the calcium uptake rate in the isolated SR, both in the presence and absence of SR channel blockade. In contrast, thapsigargin nearly completely inhibited the homogenate calcium uptake only in the absence of SR channel blockade; in the presence of blockade, about 20% of the uptake activity was insensitive to thapsigargin. This result unmasks a thapsigargin-insensitive, ryanodine-sensitive component of calcium uptake in the heart. This activity is in an oxalate-permeable pool and is inhibited by cyclopiazonic acid, another inhibitor of the SERCA calcium pumps. There was no TG-insensitive activity in the rat EDL muscle homogenate. The absence of thapsigargin-insensitive uptake activity in the isolated SR can be attributed to its inactivation during the isolation of the SR. The oxalate permeability and ryanodine sensitivity suggest that the TG-insensitive calcium uptake activity is closely related to the classical SR. The different thapsigargin sensitivities suggests the existence of two kinds of intracellular calcium pumps in the heart.  相似文献   

7.
Motile cilia in the airway epithelium are the engine for mucociliary clearance, the mechanism responsible for cleaning the airways from inhaled particles. Human airway epithelial cilia appear to have a slow constitutive rate of beating, driven by inherent and spontaneous dynein ATPase activity. Additionally, cilia can increase their beating frequency by activation of several different control mechanisms. One of these controllers is calcium. Its intracellular concentration is regulated by purinergic and acetylcholine receptors. Besides the rate regulatory effect of calcium on ciliary beat, calcium is also involved in synchronizing the beat among cilia of one single cell as well as between cilia on different cells. This article gives an overview of the complex effects of calcium on the beating of motile cilia in the airways.  相似文献   

8.
THE REGENERATION OF CILIA IN PARTIALLY DECILIATED TETRAHYMENA   总被引:7,自引:4,他引:3       下载免费PDF全文
Partial deciliation of Tetrahymena resulted in cells losing 75% of their cilia, with the balance being paralyzed. The paralyzed cilia are resorbed in the first 20 min after partial deciliation, and regeneration of cilia begins before resorption is completed. Inhibition of protein synthesis with cycloheximide does not inhibit ciliary resorption or regeneration, whereas vinblastine sulfate inhibits regeneration but not resorption. Inhibition of regeneration occurs in completely deciliated cells when they are treated with cyclohexmimide or vinblastine sulfate. It is concluded that the resorbing cilia contribute materials which allow regeneration to occur in the absence of protein synthesis. The volume of cilia regenerated in the presence of cycloheximide in partially deciliated cells is greater than the ciliary volume which is resorbed. This suggests the Tetrahymena cells have a pool of ciliary precursors. This pool does not contribute materials for regeneration in completely deciliated cells which are treated with cycloheximide. It is concluded that resorbing cilia in partially deciliated cells contribute materials which potentiate assembly of cilia from the pool of precursors.  相似文献   

9.

Objective

Regulation of apical calcium entry is important for the function of principal cells of the collecting duct. However, the molecular identity and the regulators of the transporter/channel, which is responsible for apical calcium entry and what factors regulate the calcium conduction remain unclear.

Methods and Results

We report that endogenous TRPP2 and TRPV4 assemble to form a 23-pS divalent cation-permeable non-selective ion channel at the apical membrane of renal principal cells of the collecting duct. TRPP2\TRPV4 channel complex was identified by patch-clamp, immunofluorescence and co-immunprecipitation studies in both principal cells that either possess normal cilia (cilia (+)) or in which cilia are absent (cilia (-)). This channel has distinct biophysical and pharmacological and regulatory profiles compared to either TRPP2 or TRPV4 channels. The rate of occurrence detected by patch clamp was higher in cilia (-) compared to cilia (+) cells. In addition, shRNA knockdown of TRPP2 increased the prevalence of TRPV4 channel activity while knockdown of TRPV4 resulted in TRPP2 activity and knockdown of both proteins vastly decreased the 23-pS channel activity. Epidermal growth factor (EGF) stimulated TRPP2\TRPV4 channel through the EGF receptor (EGFR) tyrosine kinase-dependent signaling. With loss of cilia, apical EGF treatment resulted in 64-fold increase in channel activity in cilia (-) but not cilia (+) cells. In addition EGF increased cell proliferation in cilia (-) cell that was dependent upon TRPP2\TRPV4 channel mediated increase in intracellular calcium.

Conclusion

We conclude that in the absence of cilia, an EGF activated TRPP2\TRPV4 channel may play an important role in increased cell proliferation and cystogenesis.  相似文献   

10.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

11.
Cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but later recover their volume with an associated KCl loss. This regulatory volume decrease (RVD) is unaffected when nitrate is substituted for Cl- or if bumetanide or 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) is added. It is inhibited by quinine, Ba2+, low pH, anticalmodulin drugs, and depletion of intracellular Ca2+. It is accelerated by the Ca2+ ionophore A23187, or by a sudden increase in external Ca2+ and at high pH. A net KCl loss is also seen after addition of ionophore A23187 in isotonic medium. Similarities are demonstrated between the KCl loss seen after addition of A23187 and the KCl loss seen during RVD. It is proposed that separate conductive K+ and Cl- channels are activated during RVD by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin. After restoration of tonicity the cells shrink initially, but recover their volume with an associated KCl uptake. This regulatory volume increase (RVI) is inhibited when NO3- is substituted for Cl-, and is also inhibited by furosemide or bumetanide, but it is unaffected by DIDS. The unidirectional Cl-flux ratio is compatible with either a coupled uptake of Na+ and Cl-, or an uptake via a K+/Na+/2Cl- cotransport system. No K+ uptake was found, however, in ouabain-poisoned cells where a bumetanide-sensitive uptake of Na+ and Cl- in nearly equimolar amounts was demonstrated. Therefore, it is proposed that the primary process during RVI is an activation of an otherwise quiescent Na+/Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump. There is a marked increase in the rate of pump activity in the absence of a detectable increase in intracellular Na+ concentration.  相似文献   

12.
13.
Membrane vesicles capable of energy-dependent calcium uptake have been prepared from Bacillus megaterium cells in log-phase growth or when undergoing sporulation. The uptake is dependent on the calcium concentration and appears saturable in vesicles from cells in log-phase growth. Both ascorbate and phenazine methosulfate are needed as a source of electrons for the energy-dependent increase in calcium uptake. Addition of 8 mM sodium cyanide inhibited the energy-dependent uptake. If this calcium uptake mechanism is a component of the sporulation-specific calcium accumulation process, the latter's functional expression would appear to be inhibited during log-phase growth.  相似文献   

14.
The proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited antigen-stimulated secretion and calcium influx in rat basophilic leukemia cells. In a glucose-free solution the inhibitory effects of CCCP were due to a decrease in the intracellular ATP concentration; however, when glucose was present there was no decrease in ATP. Instead, we found that in a glucose-containing saline solution, CCCP inhibited antigen-stimulated calcium uptake because it depolarized the plasma membrane, which in rat basophilic leukemia cells inhibits antigen-stimulated calcium uptake. In the presence of glucose, relatively low concentrations of CCCP inhibited calcium uptake while higher concentrations were required to inhibit secretion. In contrast, the initial antigen-stimulated rise in cytoplasmic calcium, measured with the fluorescent calcium indicator quin2, was not inhibited by CCCP. This suggests that the release of calcium from intracellular stores might, in some cases, be sufficient to support antigen-stimulated secretion. In the presence of CCCP the pH gradient becomes important for regulating the membrane potential across the plasma membrane. When cells were depolarized with CCCP and the external pH was increased, the membrane potential returned to resting levels and antigen-stimulated calcium uptake was restored. Inhibition of antigen-stimulated secretion by higher concentrations of CCCP could also be reversed by increasing the external pH.  相似文献   

15.
The chemo-electrical transduction process in olfactory neurons is accompanied by a rapid and transient increase in intracellular calcium concentrations. The notion that Na+/Ca2+ exchanger activities may play a major role in extruding calcium ions out of the cell and maintaining Ca2+ homeostasis in olfactory receptor cells was assessed by means of laser scanning confocal microscopy in combination with the fluorescent indicators Fluo-3 and Fura-Red. The data indicate that high exchanger acitivity, which was inhibited by amiloride derivatives, is located in the dendritic knob and probably in the olfactory cilia. This result was supported by experiments using specific antiserum raised against retinal Na+/Ca2+ exchanger protein which labelled an immunoreactive protein of 230 kDa in Western blots from olfactory tissue and strongly stained the ciliary layer of the olfactory epithelium.  相似文献   

16.
Enhanced uptake of calcium by transforming lymphocytes   总被引:6,自引:0,他引:6  
Phytohemagglutinin caused a rapid increase in calcium accumulation by lymphocytes. The enhanced uptake was observed within 1 hr of initiation of transformation in both human lymphocyte and mouse spleen cell cultures. Increased uptake was also found in mixed lymphocyte cultures although not until late in the response. The rate of calcium uptake increased with time after stimulation and depended upon the PHA concentration. The lowtemperature coefficient (Q10) for calcium permeability in unstimulated cells was indicative of a passive diffusion process, but the Q10 was slightly greater for PHA-stimulated cells. Various chemical agents which alter membrane properties and/or cellular metabolism inhibited uptake to a greater extent in stimulated cultures than in control cultures. Ouabain did not affect the calcium permeability of controls or stimulated cells within 1 hr after PHA addition, but it partially inhibited calcium uptake 12 hr after PHA treatment. Cyclic AMP, dibutyryl cyclic AMP, and theophylline also altered calcium transport providing evidence for an effect of cyclic AMP on an early event in the transformation process.  相似文献   

17.
1. ATP-dependent calcium uptake by a rabbit brain vesicular fraction (microsomes) was studied in the presence of phosphate or oxalate. These anions, which are known to form insoluble calcium salts, increased the rate of calcium uptake and the capacity of the vesicles for calcium accumulation. 2. The degree of activation depended on the concentration of phosphate or oxalate. Under optimal conditions, phosphate promoted a 5-fold increase in the amount of calcium stored at steady state. This level was 200-250 nmol Ca-2+/mg protein. 3. Initial rate of calcium uptake followed Michaelis-Menten kinetics with an apparent Km for calcium of 6.7-10-minus 5 M and a V of 44 nmol/min per mg protein. Optimal pH was 7.0. With 2 mM ATP, optimal Mg-2+ concentration was 2 mM. 4. Dintrophenol and NaN3 inhibited calcium uptake in a mitochondria-enriched fraction but not in the microsomal fraction. 5. Calcium uptake activity was compared in the six subfractions prepared from the whole microsomal fraction by means of a sucrose density gradient fractionation. 6. The Mg-2+-dependent ATPase activity of brain microsomes was activated by calcium. Maximal activation was attained with 100 muM CaCl2. Greater calcium concentrations caused a progressive inhibition. 7. The data suggest that the ATP-dependent calcium uptake in brain microsomes, as in muscle microsomes, is brought about by an active transport process, calcium being accumulated as a free ion inside the vesicles.  相似文献   

18.
Calcium uptake into ejaculated ram spermatozoa is highly enhanced by the addition of extracellular phosphate. Under identical conditions, extracellular calcium stimulates the uptake of phosphate by the cells. Both calcium and phosphate uptake are comparably inhibited by the sulfhydryl reagent mersalyl. The I50 was found to be 6.36 and 10.14 nmol mersalyl per mg protein for phosphate and calcium uptake, respectively. Calcium uptake is inhibited by mersalyl whether phosphate is present or not. Extracellular fructose causes a 5-fold increase in calcium uptake. When fructose and phosphate are present in the cell's medium, there is an additive effect, which indicates that two independent systems are involved in calcium transport into the cell. Ruthenium red, which blocks Ca2+ transport into the mitochondria, causes 70% and 95% inhibition of calcium uptake in the absence or in the presence of fructose, respectively. Ruthenium red does not affect phosphate uptake unless calcium was present in the incubation medium. The stimulatory effect of fructose upon calcium uptake can be mimicked by L-lactate and can be inhibited by the glycolytic inhibitor 2-deoxyglucose. Fructose and L-lactate stimulate mitochondrial respiration in a comparable way. Oligomycin, which inhibits mitochondrial ATP synthesis, does not inhibit Ca2+ uptake. This indicates that ATP is not involved in the mechanism by which mitochondrial respiration stimulates Ca2+ uptake. The calcium channel blocker, verapamil, inhibits Ca2+ uptake in the presence or absence of extracellular phosphate. The phosphate-dependent calcium transport mechanism is more sensitive to verapamil than is the phosphate-independent transporter. In summary, the data indicate that the plasma membrane of mammalian spermatozoa contains a calcium/phosphate symporter, a phosphate-independent calcium carrier and a calcium-independent phosphate carrier.  相似文献   

19.
ABSTRACT. We have used the anti-phosphoprotein antibody MPM-2 to examine changes in phosphorytation of cortical proteins during cilia regeneration in Tetrahymena thermophila . Although numerous cortical proteins are phosphorylated in both nondeciliated and deciliated cells, deciliation induces a dramatic increase in the phosphorylation of a 90-kDa cortical protein. The 90-kDa protein remained phosphorylated during cilia regeneration and then gradually became dephosphorylated. The 90-kDa protein was phosphorylated and dephosphorylated normally in Tetrahymena mutants that assemble short cilia, suggesting that achievement of full length is not the signal that triggers dephosphorylation of the 90-kDa protein. When initiation of cilia assembly is blocked, the 90-kDa protein becomes phosphorylated and remains phosphorylated for an extended period of time, suggesting that initiation of cilia elongation triggers eventual dephosphorylation of the 90-kDa protein, regardless of how long the cilia actually become.  相似文献   

20.
Regulation of ciliary activity in the mammalian respiratory tract   总被引:1,自引:0,他引:1  
A computer-assisted transillumination, photoelectronic technique has been used to measure the beat frequency of cilia of rabbit tracheal cells grown in culture. When ciliated cells are mechanically stimulated with a microprobe the cells respond rapidly by increasing the beat frequency of their cilia. This mechanosensitive response is not limited to the stimulated cell, but is communicated in all directions to neighboring cells. To characterize the progression of this communicated response we used an automated computer-assisted imaging system to examine high-speed films of responding cells. The time it takes for the response to be transmitted between cells is slow (1-3 sec) with each cell responding after a lag-time that is proportional to the distance of the cell from the stimulated cell. We have confirmed that gap junctions are present between cells and that adjacent or non-adjacent ciliated, as well as non-ciliated, cells are electrically coupled. To correlate the mechanosensitive response with intracellular calcium fluxes we have used fura-2, a calcium-specific fluorescent dye, and digital video microscopy. Mechanical stimulation of the cultured ciliated cells, in the presence of extracellular calcium, resulted in an initial increase in intracellular calcium, which was communicated to neighboring cells. Without extracellular calcium, mechanosensitivity of cultured cells was lost and a small decrease in intracellular calcium was observed in the stimulated cell. However, neighboring cells still displayed an increase in intracellular calcium. The time course and general pattern of calcium increase in adjacent cells was similar to the responses in ciliary activity produced by mechanical stimulation. Ciliary beat frequency is also elevated by beta-adrenergic drugs independently of mechanosensitivity. These responses are important because they could provide a dual regulatory mechanism for the control of mucus transport. Adrenergic agonists could provide non-specific control by increasing ciliary activity throughout the airways while mechanosensitivity could provide local control by increasing activity in those regions of heavy mucus load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号