首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Xiong AS  Peng RH  Zhuang J  Chen JM  Zhang B  Zhang J  Yao QH 《PloS one》2011,6(11):e26773
A β-glucuronidase variant, GUS-TR3337, that was obtained by directed evolution exhibited higher thermostability than the wild-type enzyme, GUS-WT. In this study, the utility of GUS-TR337 as an improved reporter was evaluated. The corresponding gus-tr3337 and gus-wt genes were independently cloned in a plant expression vector and introduced into Arabidopsis thaliana. With 4-MUG as a substrate, plants containing the gus-wt gene showed no detectable β-glucuronidase activity after exposure to 60°C for 10 min, while those hosting the gus-tr3337 gene retained 70% or 50% activity after exposure to 80°C for 10 min or 30 min, respectively. Similarly, in vivo β-glucuronidase activity could be demonstrated by using X-GLUC as a substrate in transgenic Arabidopsis plants hosting the gus-tr3337 gene that were exposed to 80°C for up to 30 min. Thus, the thermostability of GUS-TR3337 can be exploited to distinguish between endogenous and transgenic β-glucuronidase activity, which is a welcome improvement in its use as a reporter.  相似文献   

2.
Many reporter genes, such as gfp, gusA, and lacZ, are widely used for research into plants, animals, and microorganisms. Reporter genes, which offer high levels of sensitivity and convenience of detection, have been utilized in transgenic technology, promoter analysis, drug screening, and other areas. Directed molecular evolution is a powerful molecular tool for the creation of designer proteins for industrial and research applications, including studies of protein structure and function. Directed molecular evolution is based mainly on in vitro recombination methods, such as error-prone PCR and DNA shuffling. The strategies of directed evolution of enzyme biocatalysts have been the subject of several recent reviews. Here, we briefly summarize successes in the field of directed molecular evolution of reporter genes and discuss some of the applications.  相似文献   

3.
通过DNA改组技术获得高活性β-葡萄糖苷酸酶   总被引:7,自引:0,他引:7  
β 葡萄糖苷酸酶是在植物转基因中广泛应用的报告基因 .以质粒pBI12 1中的GUS基因为基础 ,利用DNA改组方法 ,经DNaseⅠ降解 ,PrimerlessPCR ,PrimerPCR对GUS基因进行了突变和改组 ,然后将改组的GUS基因连接到原核表达载体pG2 5 1中 ,构建了库容为 10 8的突变体库 .经过活性的筛选 ,得到活性提高的克隆 ,再以此为基础 ,经过新的改组、筛选得到活性大幅度提高的克隆GUS2 4 .基因测序显示 ,GUS2 4与GUS基因之间的同源性为 99 7% ,共有 6个核苷酸位点发生了改变 ,分别是 :379位的A突变为G ,396位的T突变为C ,711位的G突变为A ,95 8位T突变为C ,990位的T突变为C ,1649位的A突变为G .核苷酸序列推导的氨基酸序列显示 ,3个氨基酸发生了突变 ,12 7位的Ser突变为Gly ,32 0位的Trp突变为Arg ,5 5 0位的Asn突变为Ser.X gluc染色检测和荧光测活结果显示GUS2 4基因表达的 β 葡萄糖苷酸酶基较GUS基因表达产物活性提高 3倍  相似文献   

4.
We performed directed evolution on a chemically synthesized 1,533-bp recombinant beta-galactosidase gene from Pyrococcus woesei. More than 200,000 variant colonies in each round of directed evolution were screened using the pYPX251 vector and host strain Rosetta-Blue (DE3). One shifted beta-galactosidase to beta-glucuronidase mutant, named YG6762, was obtained after four rounds of directed evolution and screening. This mutant had eight mutated amino acid residues. T29A, V213I, L217M, N277H, I387V, R491C, and N496D were key mutations for high beta-glucuronidase activity, while E414D was not essential because the mutation did not lead to a change in beta-glucuronidase activity. The amino acid site 277 was the most essential because mutating H back to N resulted in a 50% decrease in beta-glucuronidase activity at 37°C. We also demonstrated that amino acid 277 was the most essential site, as the mutation from N to H resulted in a 1.5-fold increase in beta-glucuronidase activity at 37°C. Although most single amino acid changes lead to less than a 20% increase in beta-glucuronidase activity, the YG6762 variant, which was mutated at all eight amino acid sites, had a beta-glucuronidase activity that was about five and seven times greater than the wild-type enzyme at 37 and 25°C, respectively. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
An NaCl-independent stability-enhanced mutant of glucose dehydrogenase (GlcDH) was obtained by using in vitro directed evolution. The family shuffling method was applied for in vitro directed evolution to construct a mutant library of GlcDH genes. Three GlcDH-coding genes from Bacillus licheniformis IFO 12200, Bacillus megaterium IFO 15308 and Bacillus subtilis IFO 13719 were each cloned by direct PCR amplification into the p Trc99A expression vector and expressed in the host, Escherichia coli. In addition to these three GlcDH genes, a gene encoding a previously obtained GlcDH mutant, F20 (Q252L), derived from B. megaterium IWG3, was also subjected to directed evolution by the family shuffling method. A highly thermostable mutant, GlcDH DN-46, was isolated in the presence or absence of NaCl after the second round of family shuffling and filter-based screening of the mutant libraries. This mutant had only one novel additional amino acid residue exchange (E170K) compared to F20, even though DN-46 was obtained by family shuffling of four different GlcDH genes. The effect of temperature and pH on the stability of the GlcDH mutants F20 and DN46 was investigated with purified enzymes in the presence or absence of NaCl. In the absence of NaCl, F20 showed very poor thermostability (half-life =1.3 min at 66 degrees C), while the half-life of isolated mutant DN-46 was 540 min at 66 degrees C, i.e., 415-fold more thermostable than mutant F20. The activity of the wild-type and F20 enzymes dropped critically when the pH value was changed to the alkaline range in the absence of NaCl, but no such decrease was apparent with the DN-46 enzyme in the absence of NaCl.  相似文献   

6.
The plant-pathogenic fungus Pseudocercosporella herpotrichoides has been successfully transformed by using two different positive selection systems in combination with the Escherichia coli gusA gene. The selectable markers used in this study were the hygromycin B phosphotransferase gene (hph) from E. coli and the gene (bml) for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa. A lower transformation rate was obtained with the bml system than with the hph system. Conversely, cotransformation frequencies, as determined with medium plates containing the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid, were higher with bml than with hph as the selectable marker. The hygromycin-resistant transformants were mitotically stable, and both the selectable gene and gusA were maintained through conidiation. The vector DNA was integrated into the genome, and the number and sites of insertion varied among transformants. Enzyme assays of mycelial extracts showed that beta-glucuronidase activity was highest in transformants with a high gusA copy number. Expression of gusA during growth of the fungus on plants was easily detectable and did not affect pathogenicity. These results form the basis for construction of a versatile and sensitive reporter gene system for P. herpotrichoides.  相似文献   

7.
Callanan MJ  Russell WM  Klaenhammer TR 《Gene》2007,389(2):122-127
The Lactobacillus gasseri ADH beta-glucuronidase gene, gusA, was cloned previously and found to exhibit excellent activity in acidic pH ranges, with maximal activity at pH 5.0. In contrast, activity was limited in neutral pH ranges of 6-7. In an effort to improve the activity of the reporter enzyme in neutral pH ranges, the gusA gene was cloned into the broad host range vector, pGK12, and subjected to random mutagenesis by passage through Epicurian coli mutator strain XL1-Red. Two mutant alleles, gusA2 and gusA3, were recovered that produced beta-glucuronidase with increased activity in neutral pH ranges. One of these, gusA3, was significantly more active in the pH range of 4-8 in both Escherichia coli and L. gasseri. Sequence analysis of gusA2 and gusA3 revealed single base pair changes that resulted in D524G and D573A substitutions, respectively. The modified GusA3 enzyme has expanded potential for use as a reporter enzyme in expression hosts that are not acidophilic, as well as lactic acid bacteria and other microorganisms that grow in acidifying environments.  相似文献   

8.
The use of the Escherichia coli enzyme beta-glucuronidase (GUS) as a reporter in gene expression studies is limited due to loss of activity during tissue fixation by glutaraldehyde or formaldehyde. We have directed the evolution of a GUS variant that is significantly more resistant to both glutaraldehyde and formaldehyde than the wild-type enzyme. A variant with eight amino acid changes was isolated after three rounds of mutation, DNA shuffling, and screening. Surprisingly, although glutaraldehyde is known to modify and cross-link free amines, only one lysine residue was mutated. Instead, amino acid changes generally occurred near conserved lysines, implying that the surface chemistry of the enzyme was selected to either accept or avoid glutaraldehyde modifications that would normally have inhibited function. We have shown that the GUS variant can be used to trace cell lineages in Xenopus embryos under standard fixation conditions, allowing double staining when used in conjunction with other reporters.  相似文献   

9.
The plant-pathogenic fungus Pseudocercosporella herpotrichoides has been successfully transformed by using two different positive selection systems in combination with the Escherichia coli gusA gene. The selectable markers used in this study were the hygromycin B phosphotransferase gene (hph) from E. coli and the gene (bml) for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa. A lower transformation rate was obtained with the bml system than with the hph system. Conversely, cotransformation frequencies, as determined with medium plates containing the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid, were higher with bml than with hph as the selectable marker. The hygromycin-resistant transformants were mitotically stable, and both the selectable gene and gusA were maintained through conidiation. The vector DNA was integrated into the genome, and the number and sites of insertion varied among transformants. Enzyme assays of mycelial extracts showed that beta-glucuronidase activity was highest in transformants with a high gusA copy number. Expression of gusA during growth of the fungus on plants was easily detectable and did not affect pathogenicity. These results form the basis for construction of a versatile and sensitive reporter gene system for P. herpotrichoides.  相似文献   

10.
The plant-pathogenic fungus Fusarium oxysporum was successfully transformed with the beta-D-glucuronidase gene from Escherichia coli (gusA) (GUS system) in combination with the gene for nitrate reductase (niaD) as the selectable marker. The frequency of cotransformation, as determined by GUS expression on plates containing medium supplemented with 5-bromo-4-chloro-3-indolyl glucuronide (GUS+), was very high (up to 75%). Southern hybridization analyses of GUS+ transformants revealed that single or multiple copies of the gusA gene were integrated into the genomes. High levels of GUS activity are expressed in some transformants, but activity in F. oxysporum does not appear to be correlated with the copy number of the gusA gene. Since the highest activity was found in a transformant with a single copy, it can be assumed that sequence elements of F. oxysporum integrated upstream of the gene can act as a promoter or enhancer. Expression of the gusA gene was also detected during growth of the fungus in plants, indicating that the GUS system can be used as a sensitive and easy reporter gene assay in F. oxysporum.  相似文献   

11.
ABSTRACT: BACKGROUND: Lipase from Rhizopus chinensis is a versatile biocatalyst for various bioconversions and has been expressed at high-level in Pichia pastoris. However, the use of R. chinensis lipase in industrial applications is restricted by its low thermostability. Directed evolution has been proven to be a powerful and efficient protein engineering tool for improvement of biocatalysts. The present work describes improvement of the thermostability of R. chinensis lipase by directed evolution using P. pastoris as the host. RESULTS: An efficient, fast and highly simplified method was developed to create a mutant gene library in P. pastoris based on in vivo recombination, whose recombination efficiency could reach 2.3 x 105 /mug DNA. The thermostability of r27RCL was improved significantly by two rounds of error-prone PCR and two rounds of DNA shuffling in P. pastoris. The S4-3 variant was found to be the most thermostable lipase, under the conditions tested. Compared with the parent, the optimum temperature of S4-3 was two degrees higher, Tm was 22 degrees higher and half-lives at 60degreesC and 65degreesC were 46- and 23- times longer. Moreover, the catalytic efficiency kcat/Km of S4-3 was comparable to the parent. Stabilizing mutations probably increased thermostability by increasing the hydrophilicity and polarity of the protein surface and creating hydrophobic contacts inside the protein. CONCLUSIONS: P. pastoris was shown to be a valuable cell factory to improve thermostability of enzymes by directed evolution and it also could be used for improving other properties of enzymes. In this study, by using P. pastoris as a host to build mutant pool, we succeeded in obtaining a thermostable variant S4-3 without compromising enzyme activity and making it a highly promising candidate for future applications at high temperatures.  相似文献   

12.
13.
Xiong AS  Peng RH  Zhuang J  Liu JG  Gao F  Xu F  Cai B  Yao QH 《Biological chemistry》2007,388(12):1291-1300
Directed evolution in vitro is a powerful molecular tool for the creation of new biological phenotypes. It is unclear whether it is more efficient to mutate an enzyme randomly or to mutate just the active sites or key sites. In this study, the strategy of a semi-rational design of directed evolution combined with whole sequence and sites was developed. The 1553 bp gene encoding the thermostable beta-galactosidase of Pyrococcus woesei was chemically synthesized and optimized for G+C content and mRNA secondary structures. The synthesized gene product was used as a template or as a wild-type control. On the basis of the first round of DNA shuffling, library construction and screening, one mutant of YH6754 was isolated with higher activity. Eight potential key sites were deduced from the sequence of the shuffled gene, and 16 degenerate oligonucleotides were designed according to those eight amino acids. Two variants of YG6765 and YG8252 were screened in the second part of DNA shuffling, library construction and screening. For comparison, one mutant of YH8757 was screened through the same routine rounds of directed evolution with YH6754 as template. The purified beta-galactosidase from YH8757 exhibited a lower specific activity at 25 degrees C than those purified from mutated YG6755 and YG8252.  相似文献   

14.
15.
Trehalose is a nonspecific protective agent for biomacromolecules. Trehalose-6-phosphate synthase (OtsA)/phosphatase (OtsB), which is encoded by the gene operon otsBA located at -42 of the Escherichia coli genome, is the main enzyme system that catalyzes the synthesis of trehalose in E. coli. We cloned the operon and modified it by directed evolution. Unlike in the previously reported work, we modified the whole operon and screened the positive mutant simultaneously. Thus we believe that the gene complex solves the negative effects between two enzymes if one of them diversifies its structure or functions and finds the form most suitable for trehalose synthesis. It thus mimics the natural process, in which the functional improvement of organisms is related to alterations in coordinated enzymes. The evolution procedure was carried out in a sequence of error-prone PCR, shuffling PCR, and then strict screening of the mutants. After screening of a library of more than 4000 colonies, about 15 positive colonies were analyzed, resulting in a higher concentration of trehalose than control. One of them, E. coli TS7, shows 12.3-fold higher trehalose synthesis ability than E. coli DH5alpha. In contrast, we introduced the cDNA sequence of the tps1 gene from Saccharomyces cerevisiae, which has 54% identity with the gene otsA, as one of the templates in shuffling PCR. By hybrid evolution and screening, we obtained 10 positive colonies with higher concentrations of trehalose than control. E. coli TS22 appears to have 5.3-fold higher trehalose synthesis ability than E. coli DH5alpha and 1.6-fold more than E. coli DEF3(pOTS11). This result demonstrated that coevolution and hybrid evolution, as powerful protocols in protein engineering, are effective in modifying enzyme. It indicates that repeating the process of genomic evolution in nature is feasible.  相似文献   

16.
17.
18.
Mutant library construction in directed molecular evolution   总被引:1,自引:0,他引:1  
Directed molecular evolution imitates the natural selection process in the laboratory to find mutant proteins with improved properties in the expected aspects by exploring the encoding sequence space. The success of directed molecular evolution experiment depends on the quality of artificially prepared mutant libraries and the availability of convenient high-throughput screening methods. Well-prepared libraries promise the possibility of obtaining desired mutants by screening a library containing a relatively small number of mutants. This article summarizes and reviews the currently available methodologies widely used in directed evolution practices in the hope of providing a general reference for library construction. These methods include error-prone polymerase chain reaction (epPCR), oligonucleotide-based mutagenesis, and genetic recombination exemplified by DNA shuffling and its derivatives. Another designed method is also discussed, in which B-lymphocytes are fooled to mutate nonantibody foreign proteins through somatic hypermutation (SHM).  相似文献   

19.
In vitro directed evolution through DNA shuffling is a powerful molecular tool for creation of new biological phenotypes. E. coli beta-galactosidase and beta-glucuronidase are widely used, and their biological function, catalytic mechanism, and molecular structures are well characterized. We applied an in vitro directed evolution strategy through DNA shuffling and obtained five mutants named YG6764, YG6768, YG6769, YG6770 and YG6771 after two rounds of DNA shuffling and screening, which exhibited more beta-glucuronidase activity than wild-type beta-galactosidase. These variants had mutations at fourteen nucleic acid sites, resulting in changes in ten amino acids: S193N, T266A, Q267R, V411A, D448G, G466A, L527I, M543I, Q626R and Q951R. We expressed and purified those mutant proteins. Compared to the wild-type protein, five mutant proteins exhibited high beta-glucuronidase activity. The comparison of molecular models of the mutated and wildtype enzymes revealed the relationship between protein function and structural modification.  相似文献   

20.
The gusA gene, encoding a new beta-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a beta-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored beta-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to beta-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a beta-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified beta-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号