首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pancreatic β cells, organized in the islets of Langerhans, sense glucose and secrete appropriate amounts of insulin. We have studied the roles of LKB1, a conserved kinase implicated in the control of cell polarity and energy metabolism, in adult β cells. LKB1-deficient β cells show a dramatic increase in insulin secretion in vivo. Histologically, LKB1-deficient β cells have striking alterations in the localization of the nucleus and cilia relative to blood vessels, suggesting a shift from hepatocyte-like to columnar polarity. Additionally, LKB1 deficiency causes a 65% increase in β cell volume. We show that distinct targets of LKB1 mediate these effects. LKB1 controls β cell size, but not polarity, via the mTOR pathway. Conversely, the precise position of the β cell nucleus, but not cell size, is controlled by the LKB1 target Par1b. Insulin secretion and content are restricted by LKB1, at least in part, via AMPK. These results expose a molecular mechanism, orchestrated by LKB1, for the coordinated maintenance of β cell size, form, and function.  相似文献   

2.
To examine the roles of TGFβ isoforms on corneal morphogenesis, the eyes of mice that lack TGFβs were analyzed at different developmental stages for cell proliferation, migration and apoptosis, and for expression patterns of keratin 12, lumican, keratocan and collagen I. Among the three Tgfb−/− mice, only Tgfb2−/− mice have abnormal ocular morphogenesis characterized by thin corneal stroma, absence of corneal endothelium, fusion of cornea to lens (a Peters'-like anomaly phenotype), and accumulation of hyaline cells in vitreous. In Tgfb2−/− mice, fewer keratocytes were found in stroma that has a decreased accumulation of ECM; for example, lumican, keratocan and collagen I were greatly diminished. The absence of TGFβ2 did not compromise cell proliferation, nor enhance apoptosis. The thinner stroma resulting from decreased ECM synthesis may account for the decreased cell number in the stroma of Tgfb2 null mice. Keratin 12 expression was not altered in Tgfb2−/− mice, implicating normal corneal type epithelial differentiation. Delayed appearance of macrophages in ocular tissues was observed in Tgfb2−/− mice. Malfunctioning macrophages may account for accumulation of cell mass in vitreous of Tgfb2 null mice.  相似文献   

3.
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.  相似文献   

4.
The cytoplasmic concentrations of Cl([Cl]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic β-cells isolated from ob/ob mice. Steady-state [Cl]i in unstimulated β-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl into β-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4′ diisothiocyanato-dihydrostilbene-2,2′-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl with the more easily permeating anions SCN, I, NO3 or Br. It is concluded that glucose stimulation of the β-cells is coupled to an increase in their Cl permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl fluxes.  相似文献   

5.
Serum components, present intracellularly in cultured human fibroblasts, were identified as α2-macroglobulin (α2M), albumin, α1-trypsin inhibitor, hemopexin and transferrin, among others. These components were shown to be taken up from the culture medium. Kinetic analysis of the uptake of α2M-trypsin complexes by the cells showed the uptake to be of a high affinity mechanism (KM = 6 × 10−8 M α2M in the medium), with a high rate of internalization (Vmax=1.03 × 106 molecules α2M/cell and α2M per hour). The intracellular degradation of α2M is rapid, as judged by the half-life of 1.6 h. Virus-transformed or tumor-derived cell lines showed low or undetectable levels of α2M. The possible physiological significance of the described phenomena is discussed in relation to the in vivo situation.  相似文献   

6.
Reactive Oxygen Species Enhance Insulin Sensitivity   总被引:1,自引:0,他引:1  
Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high-fat-diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the antioxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo.  相似文献   

7.
Prostaglandin F2α (PGF2α) is a potent adipose differentiation inhibitor for the adipogenic cell line 1246 and for adipocyte precursors in primary culture with an ED50 of 3×10−8 M. In this paper, we examined the effect of several prostaglandins which have structural similarities with PGF2α on the differentiation of 1246 cells and of adipocyte precursors in primary culture. The results show that only 9α,11β-PGF2α is as potent as PGF2α to inhibit differentiation of adipocyte precursors in primary culture and of the adipogenic cell line 1246. In the presence of 9α,11β-PGF2α, the cells remained fibroblast-like, typical of undifferentiated adipocyte precursors. Triglyceride accumulation and increase of specific activity for glycerol-3-phosphate dehydrogenase were inhibited. In addition, mRNA expression of early markers of differentiation such as lipoprotein lipase (LPL) and fatty acid binding protein (FAB) was decreased. The isomer 9β,11α-PGF2α and other PGF2α derivatives were inactive. These results provide new information on the biological activity of 9α,11β-PGF2α as an inhibitor of adipose differentiation and about the structural characteristics of prostaglandins required for maintenance of a high adipose differentiation inhibitory effect.  相似文献   

8.
A semi-micro assay was developed for the conjugation of 5α,6α-epoxy-cholestan-3β-ol (cholesterol α-oxide) with glutathione. The soluble supernatant of rat liver homogenate catalysed the reaction at a rate of 0.2–0.5 pmol.min−1 .mg protein−1 with 4μM cholesterol α-oxide, while the reaction in the presence of GSH alone was barely detectable. Enzymic activity in the soluble supernatant was due equally to the two forms of glutathione transferase B (100 pmol.min.mg protein−1), glutathione transferases AA, A, C and E being unreactive. The activity of purified glutathione transferase B was about 5-times that expected from the activity of the soluble supernatant. Complex enzyme kinetics were obtained suggestive of substrate inhibition.  相似文献   

9.
10.
Owing to the avascular environment within ovarian follicles, granulosa cells (GCs) are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH)-mediated steroidogenesis is crucial for normal growth and maturation of ovarian follicles, but it remains unclear how FSH stimulates estradiol (E2) synthesis under hypoxic conditions. Here, we aimed to explore whether FSH affects the ATP production required for estrogen synthesis from the perspective of glucose metabolism. It was observed that the levels of both E2 and HIF-1α were markedly increased in a dose-dependent manner in mouse ovarian GCs after the injection of FSH in vivo, indicating that hypoxia/HIF-1α may be relevant to FSH-induced E2 synthesis. By treating hypoxic GCs with FSH in vitro, we further revealed that the activation of the AMP-activated protein kinase (AMPK)–GLUT1 pathway, which in turn stimulates ATP generation, may be essential for FSH-mediated E2 production during hypoxia. In contrast, inhibition of AMPK or GLUT1 with siRNAs/antagonist both repressed glycolysis, ATP production, and E2 synthesis despite FSH treatment. Moreover, blocking HIF-1α activity using siRNAs/PX-478 suppressed AMPK activation, GLUT1 expression, and E2 levels in FSH-treated GCs. Finally, the in vitro findings were verified in vivo, which showed markedly increased AMPK activity, GLUT1 expression, glycolytic flux, ATP levels, and E2 concentrations in ovarian GCs following FSH injection. Taken together, these findings uncovered a novel mechanism for FSH-regulating E2 synthesis in hypoxic GCs by activating glycolytic metabolism through the HIF-1α–AMPK–GLUT1 pathway.  相似文献   

11.
Photoautotrophic cultivation of Euglena gracilis results in cells with high α-tocopherol content but the final cell concentration is usually very low due to the difficulty of supplying light efficiently to the photobioreactor. On the other hand, Euglena grows heterotrophically to high cell concentrations, using various organic carbon sources, but the α-tocopherol contents of heterotrophically grown cells are usually very low. Sequential heterotrophic/photoautotrophic cultivation, by which cells are grown heterotrophically to high cell concentrations and then transferred to photoautotrophic culture for accumulation of α-tocopherol was therefore investigated for efficient α-tocopherol production. In batch culture, using glucose as the organic carbon source, the cellular α-tocopherol content increased from 120 μg g−1 at the end of heterotrophic phase to more than 400 μg g−1 at the end of the photoautotrophic phase. By using ethanol as the organic carbon source during the heterotrophic phase, adding corn steep liquor as a nitrogen source and optimizing light supply during the photoautotrophic phase, the α-tocopherol content of the cells at the end of the photoautotrophic phase increased to 1700 μg g−1. A system consisting of a mini-jar fermentor (for the heterotrophic phase) and an internally illuminated photobioreactor (for the photoautotrophic phase) was then constructed for continuous sequential heterotrophic/photoautotrophic cultivation. The cells were continuously cultivated heterotrophically in the mini-jar fermentor and the effluent was continuously passed through the photobioreactor for α-tocopherol accumulation. In this way, it was possible to produce 7 g l−1 cells containing about 1100 μg α-tocopherol per g-cell continuously for more than 420 h. The continuous process resulted in α-tocopherol productivity of 100 μg l−1 h−1 which is about 9.5 and 4.6 times higher than those obtained in batch photoautotrophic culture and batch heterotrophic cultures, respectively.  相似文献   

12.
Inpp5b is an ubiquitously expressed type II inositol polyphosphate 5-phosphatase. We have disrupted the Inpp5b gene in mice and found that homozygous mutant males are infertile. Here we examine the causes for the infertility in detail. We demonstrate that sperm from Inpp5b−/− males have reduced motility and reduced ability to fertilize eggs, although capacitation and acrosome exocytosis appear to be normal. In addition, fertilin β, a sperm surface protein involved in sperm-egg membrane interactions that is normally proteolytically processed during sperm transit through the epididymis, showed reduced levels of processing in the Inpp5b−/− animals. Inpp5b was expressed in the Sertoli cells and epididymis and at low levels in the developing germ cells; however, mice lacking Inpp5b in spermatids and not in other cell types generated by conditional gene targeting, were fully fertile. The abnormalities in mutant sperm function and maturation appear to arise from defects in the functioning of Sertoli and epididymal epithelial cells. Our results directly demonstrate a previously unknown role for phosphoinositides in normal sperm maturation beyond their previously characterized involvement in the acrosome reaction. Inpp5b−/− mice provide an excellent model to study the role of Sertoli and epididymal epithelial cells in the differentiation and maturation of sperm.  相似文献   

13.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

14.
POMC-derived peptides and mRNA have been identified in heart tissue, although POMC processing has not been fully characterized. In the present study, we found that β-lipotropin and ACTH were localized in rat heart, although they were almost entirely converted to β-endorphin- and α-MSH-related peptides. Ion exchange HPLC analysis revealed that β-endorphin(1–31) was further processed to α-N-acetyl-β-endorphin(1–31), which comprised 35.9 ± 0.1% of total immunoreactivity, and smaller amounts of β-endorphin(1–27), β-endorphin(1–26), and their α-N-acetylated derivatives. The predominant α-MSH immunoreactive peptides coeluted with α-MSH and N,O-diacetyl-α-MSH by reverse-phase HPLC, although small amounts of ACTH(1–13)-NH2 were also present. Thus, multiple forms of β-endorphin and α-MSH are localized in rat heart. β-Endorphin(1–31) is a minor constituent, however, indicating that nonopioid β-endorphin peptides predominate.  相似文献   

15.
A highly sensitive, kinetically unambiguous assay for α-factor-induced delay of cell passage through the “start” step of cell division in yeast is presented. The assay employs perfusion with periodic microscopy to monitor the bud emergence kinetics on the 20% of cells within an exponentially growing population which exist prior to the α-factor execution point of start. The t1/2 for cell passage through start by this population of cells is 31 min in the absence of α-factor. The inhibition constant, KI, represents the α-factor concentration which produces a 50% inhibition of this rate and is equal to 2×10−10M. A second assay for maximal cell division arrest by α-factor on whole populations of cells is presented. This assay shows a maximum cell division arrest time of 125±5 h at saturating α-factor, and a K50 (that is, an α-factor concentration which produces a half-maximal response) of 2.5×10−8M. Both assays were performed in the effective absence of α-factor inactivation. Values of the dissociation constant KD and total number of receptors per cell which specifically mediate cell division arrest or delay were estimated to be 2.5×10−8M and 104, respectively. These estimates, along with the quantitative dose-response data for division arrest which are presented here, are consistent with each receptor·α-factor complex which is present on the cell at equilibrium producing a 43±10 s delay of cell passage through start. Surprisingly, this number is constant within twofold over the entire range of cellular division arrest responses to α-factor, that is, from a 1.9-fold inhibition of the rate of cell passage through start at 0.17 nM α-factor to a 125±5 h maximum arrest at saturating α-factor concentrations of >170 nM. The possible significance of this observation toward the mechanism of α-factor-induced cell division arrest is discussed.  相似文献   

16.
Cell-free extracts from Saccharomyces cerevisiae catalyzed the incorporation of glucosyl residues from UDP-[U-14C]glucose into β-1, 3-glucans which contained a significant proportion of β-1, 6-glycosidic linkages. When GDP-[U-14C]-glucose was used as substrate only trace amounts of glucose were incorporated. Activity of β-glucan synthetase was distributed among membrane and cell wall fractions, specific activity being higher in this latter. β-Glucan synthesized by membrane and cell wall fractions contained 0.6% and 2.5% of β-1, 6-glycosidic linkages respectively. A marked decrease in the activity of β-glucan synthetase occurred as the cells aged. Significant activity of glycogen synthetase was detected only in cells which had reached the stationary phase of growth.  相似文献   

17.
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1α and PPARγ, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1α activates glycolytic genes and PPARγ, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1α in mice prevents hypertrophy-induced PPARγ activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1α-PPARγ axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.  相似文献   

18.
The psychrotolerant bacterium Shewanella sp. G5 was used to study differential protein expression on glucose and cellobiose as carbon sources in cold-adapted conditions. This strain was able to growth at 4 °C, but reached the maximal specific growth rate at 37 °C, exhibiting similar growing rates values with glucose (μ: 0.4 h−1) and cellobiose (μ: 0.48 h−1). However, it grew at 15 °C approximately in 30 h, with specific growing rates of 0.25 and 0.19 h−1 for cellobiose and glucose, respectively. Thus, this temperature was used to provide conditions related to the environment where the organism was originally isolated, the intestinal content of Munida subrrugosa in the Beagle Channel, Fire Land, Argentina. Cellobiose was reported as a carbon source more frequently available in marine environments close to shore, and its degradation requires the enzyme β-glucosidase. Therefore, this enzymatic activity was used as a marker of cellobiose catabolism. Zymogram analysis showed the presence of cold-adapted β-glucosidase activity bands in the cell wall as well as in the cytoplasm cell fractions. Two-dimensional gel electrophoresis of the whole protein pattern of Shewanella sp. G5 revealed 59 and 55 different spots induced by cellobiose and glucose, respectively. Identification of the quantitatively more relevant proteins suggested that different master regulation schemes are involved in response to glucose and cellobiose carbon sources. Both, physiological and proteomic analyses could show that Shewanella sp. G5 re-organizes its metabolism in response to low temperature (15 °C) with significant differences in the presence of these two carbon sources.  相似文献   

19.
Mouse peritoneal macrophages activated by bacillus Calmette-Guerin (BCG) were incubated with human α2-macroglobulin converted to its ‘fast’ form with either trypsin or methylamine before being stimulated with phorbol myrystate acetate. Both α2-macroglobulin-trypsin and α2-macroglobulin-methylamine inhibited macrophage production of superoxide anion (O2) while native α2-macroglobulin had little effect except at high concentration. The α2-macroglobulin ‘fast’ forms, which bind with a Kd of about 8 nM, inhibited 50% generation of O2(ID50) at a concentration of 7 nM while α2-macroglobulin inhibited O2 production with an ID50 of 141 nM. The ‘fast’ forms of α2-macroglobulin may play a role in the feedback regulation of inflammatory reactions.  相似文献   

20.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号