首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High-throughput methods for generating aptamer microarrays are described. As a proof-of-principle, the microarrays were used to screen the affinity and specificity of a pool of robotically selected antilysozyme RNA aptamers. Aptamers were transcribed in vitro in reactions supplemented with biotinyl-guanosine 5'-monophosphate, which led to the specific addition of a 5' biotin moiety, and then spotted on streptavidin-coated microarray slides. The aptamers captured target protein in a dose-dependent manner, with linear signal response ranges that covered seven orders of magnitude and a lower limit of detection of 1 pg/mL (70 fM). Aptamers on the microarray retained their specificity for target protein in the presence of a 10,000-fold (w/w) excess of T-4 cell lysate protein. The RNA aptamer microarrays performed comparably to current antibody microarrays and within the clinically relevant ranges of many disease biomarkers. These methods should also prove useful for generating other functional RNA microarrays, including arrays for genomic noncoding RNAs that bind proteins. Integrating RNA aptamer microarray production with the maturing technology for automated in vitro selection of antiprotein aptamers should result in the high-throughput production of proteome chips.  相似文献   

3.
4.
Summary. In the postgenomic era new technologies are emerging for global analysis of protein function. The introduction of active site-directed chemical probes for enzymatic activity profiling in complex mixtures, known as activity-based proteomics has greatly accelerated functional annotation of proteins. Here we review probe design for different enzyme classes including serine hydrolases, cysteine proteases, tyrosine phosphatases, glycosidases, and others. These probes are usually detected by their fluorescent, radioactive or affinity tags and their protein targets are analyzed using established proteomics techniques. Recent developments, such as the design of probes for in vivo analysis of proteomes, as well as microarray technologies for higher throughput screenings of protein specificity and the application of activity-based probes for drug screening are highlighted. We focus on biological applications of activity-based probes for target and inhibitor discovery and discuss challenges for future development of this field.  相似文献   

5.

Background

Bioprocesses depend on a number of different operating parameters and temperature is one of the most important ones. Unfortunately, systems for rapid determination of temperature dependent reaction kinetics are rare. Obviously, there is a need for a high-throughput screening procedure of temperature dependent process behavior. Even though, well equipped micro-bioreactors are a promising approach sufficient temperature control is quite challenging and rather complex.

Results

In this work a unique system is presented combining an optical on-line monitoring device with a customized temperature control unit for 96 well microtiter plates. By exposing microtiter plates to specific temperature profiles, high-throughput temperature optimization for microbial and enzymatic systems in a micro-scale of 200 μL is realized. For single well resolved temperature measurement fluorescence thermometry was used, combining the fluorescent dyes Rhodamin B and Rhodamin 110. The real time monitoring of the microbial and enzymatic reactions provides extensive data output. To evaluate this novel system the temperature optima for Escherichia coli and Kluyveromyces lactis regarding growth and recombinant protein production were determined. Furthermore, the commercial cellulase mixture Celluclast as a representative for enzymes was investigated applying a fluorescent activity assay.

Conclusion

Microtiter plate-based high-throughput temperature profiling is a convenient tool for characterizing temperature dependent reaction processes. It allows the evaluation of numerous conditions, e.g. microorganisms, enzymes, media, and others, in a short time. The simple temperature control combined with a commercial on-line monitoring device makes it a user friendly system.
  相似文献   

6.
Differences in gene expression patterns between adult and postnatal day 7 (P7) mouse cerebellum, at the peak of granule neuron migration, were analyzed by hybridization to the GLYCOv2 glycogene array. This custom designed oligonucleotide array focuses on glycosyl transferases, carbohydrate-binding proteins, proteoglycans and related genes, and 173 genes were identified as being differentially expressed with statistical confidence. Expression levels for 11 of these genes were compared by RT-PCR, and their differential expression between P7 and adult cerebellum confirmed. Within the group of genes showing differential expression, the sialyltransferases (SiaTs) and GalNAc-Ts that were elevated at P7 prefer glycoprotein substrates, whilst the SiaTs and GalNAc-Ts that were elevated in the adult preferentially modify glycolipids, consistent with a role for gangliosides in maintaining neuronal function in the adult. Also within this group, three proteoglycans--versican, bamacan and glypican-2--were elevated at P7, along with growth factor midkine, which is known to bind to multiple types of proteoglycans, and fibroblast growth factor receptor 1, whose activity is known to be influenced by heparan sulfate proteoglycans. Two sulfotransferases that can modify the extent of proteoglycan sulfation were also differentially regulated, and may modify the interaction of a subset of proteoglycans with their binding partners during cerebellar development. Bamacan, glypican-2 and midkine were shown to be expressed in different cell types, and their roles in cerebellar development during granule neuron migration and maturation are discussed.  相似文献   

7.
Generating global protein expression profiles, including also membrane proteins, will be crucial for our understanding of biological processes in health and disease. In this study, we have expanded our antibody microarray technology platform and designed the first human recombinant antibody microarray for membrane proteins targeting crude cell lysates and tissue extracts. We have optimized all key technological parameters and successfully developed a setup for extracting, labeling and analyzing non-fractionated membrane proteomes under non-denaturing conditions. Finally, the platform was also extended and shown to be compatible with simultaneous profiling of both membrane proteins and water-soluble proteins.  相似文献   

8.
This review focuses on recent developments in gel-based proteomics techniques. By combining traditional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoretic techniques with recent advances in protein labeling using different classes of molecules (i.e., fluorescent dyes, chemical probes, radioisotopes), new technologies have been developed that allow for high-throughput studies of proteins at the whole-proteome scale.  相似文献   

9.
10.
In the past decade, analysis of the urinary proteome (urinary proteomics) has intensified in response to the need for novel biomarkers that support early diagnosis of kidney diseases. In particular, this also applies to acute kidney injury, which is a heterogeneous complex syndrome with a still-increasing incidence at the intensive care unit. Unfortunately, this major need remains largely unmet to date. The current report aims to explain why attempts to implement urinary proteomic-discovered acute kidney injury diagnostic candidates in the intensive care unit setting have not yet led to success. Subsequently, some key notes are provided that should enhance the chance of translating selected urinary proteomic candidates to valuable tools for the nephrologist and intensivist in the near future.  相似文献   

11.
耦合固定化技术在天冬氨酸转氨酶反应体系中的应用   总被引:1,自引:0,他引:1  
对卡拉胶与明胶形成的耦合固定化体系进行了优化,并探讨海藻糖和金属离子(Mg^2+)等辅助因子在该体系中对酶转化过程的影响。结果表明将该法应用于L-苯丙氨酸转化体系中,保护了天冬氨酸转氨酶的活性,显著提高了酶活回收率,天冬氨酸转氨酶的活力回收达到了93.6%,较文献报道有明显提高。  相似文献   

12.
新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)席卷全球,具有较高的传染性和死亡率,但目前尚缺乏安全有效的COVID-19疫苗与治疗药物.新型冠状病毒主蛋白酶(main protease,Mpro)的进化高度保守,在调控新冠病毒RNA复制中具有重要的生物学功能,已成为新型广谱抗冠状...  相似文献   

13.

Background

Gene expression microarrays measure the levels of messenger ribonucleic acid (mRNA) in a sample using probe sequences that hybridize with transcribed regions. These probe sequences are designed using a reference genome for the relevant species. However, most model organisms and all humans have genomes that deviate from their reference. These variations, which include single nucleotide polymorphisms, insertions of additional nucleotides, and nucleotide deletions, can affect the microarray’s performance. Genetic experiments comparing individuals bearing different population-associated single nucleotide polymorphisms that intersect microarray probes are therefore subject to systemic bias, as the reduction in binding efficiency due to a technical artifact is confounded with genetic differences between parental strains. This problem has been recognized for some time, and earlier methods of compensation have attempted to identify probes affected by genome variants using statistical models. These methods may require replicate microarray measurement of gene expression in the relevant tissue in inbred parental samples, which are not always available in model organisms and are never available in humans.

Results

By using sequence information for the genomes of organisms under investigation, potentially problematic probes can now be identified a priori. However, there is no published software tool that makes it easy to eliminate these probes from an annotation. I present equalizer, a software package that uses genome variant data to modify annotation files for the commonly used Affymetrix IVT and Gene/Exon platforms. These files can be used by any microarray normalization method for subsequent analysis. I demonstrate how use of equalizer on experiments mapping germline influence on gene expression in a genetic cross between two divergent mouse species and in human samples significantly reduces probe hybridization-induced bias, reducing false positive and false negative findings.

Conclusions

The equalizer package reduces probe hybridization bias from experiments performed on the Affymetrix microarray platform, allowing accurate assessment of germline influence on gene expression.  相似文献   

14.
甲壳素/壳聚糖在酶固定化中的应用   总被引:4,自引:0,他引:4  
杨金水  刘葳 《生物技术》2006,16(2):89-91
作为功能性材料,甲壳素与壳聚糖分布广泛,且具有一系列独特的性质:无毒性、凝胶性、生物适应性、降解产物的无毒性、显著的蛋白质亲和性等。正是由于这些特性,虽然甲壳素/壳聚糖材料目前尚未得到充分的开发利用,但是与其它一些酶的固定化载体相比,具有广泛的开发前景。该文综述了近年来甲壳素/壳聚糖在酶的固定化方面的一些研究成果。主要包括:甲壳素/壳聚糖的理化性质、载体不同制备方法的特色和差异、在食品工业、非食品工业、环保、酶的分离纯化以及医疗应用方面的研究进展。  相似文献   

15.
Antibody microarrays are an emerging technology that promises to be a powerful tool for the detection of disease biomarkers. The current technology for protein microarrays has been derived primarily from DNA microarrays and is not fully characterized for use with proteins. For example, there are a myriad of surface chemistries that are commercially available for antibody microarrays, but there are no rigorous studies that compare these different surfaces. Therefore, we have used a sandwich enzyme-linked immunosorbent assay (ELISA) microarray platform to analyze 17 different commercially available slide types. Full standard curves were generated for 23 different assays. We found that this approach provides a rigorous and quantitative system for comparing the different slide types based on spot size and morphology, slide noise, spot background, lower limit of detection, and reproducibility. These studies demonstrate that the properties of the slide surface affect the activity of immobilized antibodies and the quality of data produced. Although many slide types produce useful data, glass slides coated with aldehyde silane, poly-l-lysine, or aminosilane (with or without activation with a crosslinker) consistently produce superior results in the sandwich ELISA microarray analyses we performed.  相似文献   

16.
Improvement of protein stability in protein microarrays   总被引:1,自引:0,他引:1  
Protein stability in microarrays was improved using protein stabilizers. PEG 200 at 30% (w/v) was the most efficient stabilizer giving over 4-fold improvement in protein stability compared to without the stabilizer. PEG 200 above 10% (w/v) in the array solution prevented the evaporation of water in the sample and thereby improved protein stability in the microarray. When the streptavidin-biotin binding reaction was performed under optimized conditions, biotin-BSA-fluorescein isothiocyanate (FITC) was detected from 1 ng ml–1 to 5 g ml–1 by fluorescence analysis.  相似文献   

17.
酶和细胞工厂是工业生物技术的核心,在医药、化工、食品、农业、能源等诸多领域发挥重要作用.一般天然酶和细胞均需通过分子改造提高其催化效率、稳定性及立体选择性等.定向改造为快速改善酶和细胞工厂的性能提供了可能性,其中灵敏可靠的高通量筛选方法是决定酶和细胞工厂成功高效定向改造的关键.文中阐述并分析讨论了各种筛选方法的优缺点、...  相似文献   

18.
19.
Motivation: DNA microarrays are a well-known and established technology in biological and pharmaceutical research providing a wealth of information essential for understanding biological processes and aiding drug development. Protein microarrays are quickly emerging as a follow-up technology, which will also begin to experience rapid growth as the challenges in protein to spot methodologies are overcome. Like DNA microarrays, their protein counterparts produce large amounts of data that must be suitably analyzed in order to yield meaningful information that should eventually lead to novel drug targets and biomarkers. Although the statistical management of DNA microarray data has been well described, there is no available report that offers a successful consolidated approach to the analysis of high-throughput protein microarray data. We describe the novel application of a statistical methodology to analyze the data from an immune response profiling assay using human protein microarray with over 5000 proteins on each chip.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号