首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Experimental allergic encephalomyelitis (EAE) is a T cell-mediated neuroimmunologic disease model characterized by meningeal and parenchymal mononuclear cell infiltrates (see preceding companion paper). Here we report enhanced staining for Ia in the central nervous system (CNS) microvasculature endothelium in acute EAE in adult strain 13 guinea pigs (GP) sensitized with GP spinal cord homogenate (SC) or with GP myelin basic protein (MBP) in complete Freund's adjuvant (CFA). Cryostat sections of CNS and other tissues were stained with two monoclonal antibodies, 5S2 and 22C4, to GP Ia determinants, and with polyclonal antibody to factor VIII-related antigen (VIII-RA) as an endothelial cell marker. Morphometric techniques were employed on immunoperoxidase counterstained and coded sections to determine the frequency of Ia+ vessels and cells. Rare (approximately 10% of VIII-RA+) vascular endothelial cells were Ia+ in the CNS of normal and CFA-sensitized controls. SC- or MBP-sensitized strain 13 GP sacrificed on day 7, before the onset of neurologic signs (pre-clinical), had no detectable CNS mononuclear cell infiltrates, but had increased (approximately 30% of VIII-RA+) endothelial cell Ia staining over controls (p less than 0.001). The endothelial Ia staining persisted (approximately 35% of VIII-RA+) in vessels as the animals developed paralysis. There were no differences in endothelial cell Ia between SC- and MBP-induced disease. EAE-resistant strain 2 GP sensitized with SC/CFA had no neurologic signs, and had fewer inflammatory foci than strain 13 GP with EAE, but had similar numbers of Ia+ endothelial cells. No differences in endothelial cell Ia staining were found in non-CNS tissues among any GP groups. In EAE, increased endothelial cell Ia is a pre-inflammatory, target organ-specific alteration that persists during inflammation. The findings suggest that in vivo modulation of endothelial cell Ia may be part of the local immune response. Endothelial cells may play a significant role, in antigen presentation or in promoting T cell migration, in the in situ immune response in the CNS.  相似文献   

2.
This study was undertaken to determine if there is differential expression of the relevant strain-specific Ia antigen on endothelial and parenchymal inflammatory cells in the central nervous systems (CNS) of guinea pigs (GP) with acute experimental allergic encephalomyelitis (EAE). Adult inbred GP were sensitized with GP spinal cord homogenate and complete Freund's adjuvant. Strain 13 GP and (2 x 13)F1 hybrids developed clinical disease within 2 to 3 wk after sensitization, whereas strain 2 GP did not, although all sensitized GP had CNS mononuclear inflammatory infiltrates. By using monoclonal antibodies to strain-specific and framework Ia epitopes with an immunoperoxidase technique, the distribution and amount of the strain 2 and strain 13 Ia were analyzed. Equivalent strain 2 and strain 13 Ia expression was found in normal tissues from F1 animals. Strain 2 and strain 13 GP sensitized for EAE had increased strain-specific Ia staining of CNS vessels and inflammatory cells over controls. However, F1 GP with EAE had markedly increased strain 13, but not strain 2, Ia on CNS parenchymal vessels and mononuclear inflammatory cells (p less than 0.001, for both). These results suggest for the first time that specific major histocompatibility complex gene products are selectively expressed on endothelial and inflammatory cells in situ in immune reactions in the target organ of individuals of heterogeneous immunogenetic composition.  相似文献   

3.
The role of myelin proteolipid apoprotein (PLP) in the central nervous system (CNS) immune response of rabbits has been investigated by analyzing the immunopathology of chronic experimental allergic encephalomyelitis (EAE) induced by sensitization with PLP. Clinical disease occurred in seven out of nine rabbits sensitized with bovine PLP and monitored for up to 6 mo. Positive delayed hypersensitivity skin test reactions to PLP occurred in all but one of the PLP-sensitized animals. All PLP-sensitized animals had meningeal and CNS parenchymal inflammation that correlated with disease severity. Serial blood samples were stained with a panel of antibodies to rabbit T and B cells, as well as Ia, and large and small mononuclear cell populations were analyzed by flow cytometry. Peripheral leukocyte population staining did not correlate with clinical signs or sensitization to PLP. Cryostat CNS tissue sections were stained with the same set of antibodies by using an immunoperoxidase technique, and positive cells and vessels were counted. T cells and macrophages were numerous and in equal numbers in perivascular parenchymal inflammatory infiltrates, whereas B cells were less numerous (p less than 0.001). T cells also diffusely infiltrated the parenchyma. Most perivascular inflammatory cells and many scattered parenchymal cells were Ia+; Ia vascular expression was increased over controls (p less than 0.001), and also correlated with disease severity. The immunopathology of this chronic EAE model is the same as that of whole CNS tissue- and myelin basic protein-induced EAE in other species, and is similar to that of multiple sclerosis. Cellular immune responses to PLP may therefore contribute to systemic and in situ responses in CNS tissue demyelinating diseases.  相似文献   

4.
The rat central nervous system (CNS) during experimental allergic encephalomyelitis (EAE) was analyzed immunohistochemically from the preclinical to recovery stage by using monoclonal antibodies specific for rat T lymphocyte subsets and Ia antigen. Through combination of the avidin-biotin technique and carefully selected fixative, cells with dendritic morphology (DC) and infiltrating mononuclear cells were clearly and intensely demonstrated in the CNS parenchyma during EAE. In normal and complete Freund's adjuvant (CFA)-injected controls, there were no inflammatory foci. Ia (OX3)-positive parenchymal cells were not detected, whereas W3/25 stained DC that were located mainly in the white matter and W3/13 stained axons. At the preclinical stage, 11 days after CNS/CFA sensitization, a few clusters of Ia+ DC were detected in some sections of the spinal cord. The number of Ia+ DC increased as clinical signs developed (P less than 0.001). In rats with a clinical score of 1 or 2, Ia+ DC were mainly located in the perivascular region and closely associated with infiltrating T lymphocytes. However, at moribund state (score 3), Ia+ DC were evenly distributed in gray and white matter on almost all sections of the spinal cord. In recovered rats, the numbers of inflammatory foci and Ia+ DC were less than those in clinical EAE rats (P less than 0.001). Rats without clinical signs throughout the course also contained a few clusters of Ia+ DC. Double immunofluorescent staining with OX3 and anti-glial fibrillary acidic protein (GFAP) antiserum demonstrated that Ia+ DC were negative for GFAP. Their morphology and distribution were similar to those of nucleoside diphosphatase-positive cells, suggesting that Ia+ DC are microglia. In contrast to DC, no astrocytes or endothelial cells express detectable levels of Ia antigen in control and clinical EAE rats. These findings suggest that brain cells other than Ia+ DC may not be involved in the local immune interaction. Ia+ DC may play a significant role in antigen presentation in the CNS with EAE.  相似文献   

5.
To determine the effects of anti-T cell monoclonal antibody-induced systemic T cell depletion in neuro-autoimmune disease, we studied the in vivo effects of 8BE6, a mouse anti-guinea pig (GP) pan-T cell monoclonal antibody, on the course and immunopathology of the disease model experimental allergic encephalomyelitis (EAE) in adult Strain 13 GP. Central nervous system (CNS) tissues were studied by routine histology and by an immunoperoxidase staining technique using monoclonal antibodies to T cells, IgM, and macrophages. From 3 days before to 10 days after sensitization with GP spinal cord and complete Freund's adjuvant, the GP were given one or two i.p. doses of 3.4 mg 8BE6 or MOPC 21, the parent mouse myeloma ascites, or normal saline. Eighteen of 18 control-treated GP developed typical acute, paralytic EAE 11 to 21 days after sensitization, whereas acute EAE was prevented in 33 of 49 8BE6-treated GP (67%), and the onset was delayed and disease progression was slowed in the others. Five GP treated with 8BE6 from days 11 to 14 after sensitization, at the onset of neurologic signs, rapidly deteriorated within hours after treatment and had loss of T cell staining, and lymphocytolysis in the CNS. 8BE6-treated GP which did not develop acute EAE were observed daily for up to 700 days (mean = 213 days). Twenty-nine of 39 (74%) had from one to six relapses or fixed neurologic deficits. GP in relapse were additionally treated with 8BE6 (22), MOPC-21 (5), or saline (6) in a cross-over protocol. Clinical scores were improved from days 2 to 12 after treatment (p less than 0.05), and complete recovery within 30 days occurred more frequently (p = 0.046) and more rapidly (p less than 0.01), after 8BE6 as compared with control treatments. Recoveries occurred more often if 8BE6 was given early in the relapse. Multiple treatments led to dose-dependent levels of serum antibodies to mouse immunoglobulin detected by an ELISA. There were no differences between acute and chronic EAE in numbers of inflammatory foci or numbers of macrophages and T cells in CNS infiltrates, but GP with chronic EAE had more extensive demyelination and vascular fibrosis and more numerous IgM+ B cells in parenchymal and meningeal infiltrates than in acute EAE (p less than 0.001).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Albino Oxford (AO) rats in comparison to the Dark August (DA) strain exhibit lower susceptibility to the induction of experimental autoimmune encephalomyelitis (EAE), and interleukin 2 (IL-2) production by their spleen and lymph node cells is significantly lower. The cellular analysis of these differences in the outcome of the EAE induction, possibly related to the differences in the IL-2 production, revealed different changes in the T cell subsets in the draining lymph node (DLN) and different cellular composition of the mononuclear infiltrates in the central nervous system (CNS). After the encephalitogenic challenge, the frequency of CD8+ T cells was much higher and the expansion of CD4+ T cells was much lower in the DLN of "low" IL-2 producer rats. AO rats have not shown any clinical sign of EAE, although histological lesions in the early phases of EAE (Day 7-9) were similar to those seen in diseased DA rats. CD4/CD8 T cell ratios and the number of cells bearing receptor for IL-2 (IL-2-R+ cells) and cells bearing class II MHC antigens (Ia+) were significantly lower in the mononuclear cell infiltrates of AO rats. These data are compatible with the notion that CD4+ IL-2-R+ encephalitogenic T cells induce clinical signs of EAE in susceptible animals and show that CD8+ T cells are present in a higher percentage in the lesions of the symptom-free AO rats.  相似文献   

7.
To investigate the sequence of immunopathologic events during lesion formation in acute experimental allergic encephalomyelitis (EAE), SJL/J mice were inoculated with isogeneic spinal cord in complete Freund's adjuvant (CFA) and with Bordetella pertussis on Days 1 and 3 postinoculation (PI). Mice were sampled at different time points PI and T cells, T-cell subsets. Ia+ cells, Ig+ cells, albumin, and Ig deposits were localized in frozen sections by the avidin-biotin complex (ABC) method and direct fluorescence. Furthermore, samples were stained for Ia antigen, myelin basic protein (MBP), and galactocerebroside (GC) localization on endothelial cells by the ABC technique. Clinical and pathologic observations were correlated with the immunopathologic results. It was found that early in the disease process myelin and Ia-antigens were demonstrable on endothelial cells within the central nervous system (CNS). Simultaneously, damage to the blood-brain barrier was apparent, as indicated by albumin deposits, and small numbers of infiltrating T cells, T-cell subsets, and Ia+ cells were found. With time PI, the density of infiltrating total T cells (Thy-1.2+), helper/inducer (Lyt-1+), and suppressor/cytotoxic (Lyt-2+) T cells increased; Lyt-1+ and Lyt-2+ cells were detectable in meningeal as well as parenchymal infiltrates, while later on, Lyt-1+ cells showed some predilection for the CNS parenchyma and Lyt-2+ cells for meninges. Ia+ cells (B cells, macrophages, activated T cells) were present in small numbers only. Ig+ cells (B cells and macrophages) appeared shortly before onset of signs and persisted in moderate numbers. These results reconfirm the importance of early T-cell involvement for the development of EAE; they might also indicate a secondary role for Ig+ cells and are consistent with the concept that presentation of myelin antigens to T cells might occur locally on Ia-bearing endothelial cells within the CNS.  相似文献   

8.
To determine whether there is predominance of T cells expressing a particular TCR V beta chain in the inflammatory lesions of an autoimmune disease model, TCR expression was analyzed in central nervous system (CNS) tissues of mice with experimental allergic encephalomyelitis (EAE). Acute EAE was induced in SJL/J mice either by sensitization with a synthetic peptide corresponding to myelin proteolipid protein residues 139-151 or by adoptive transfer of myelin proteolipid protein peptide 139-151-specific encephalitogenic T cell clones. Mice were killed when they showed clinical signs of EAE or by 40 days after sensitization or T cell transfer. Cryostat CNS and lymphoid tissue sections were immunostained with a panel of mAb to T cell markers and proportions of stained cells were counted in inflammatory foci. In mice with both actively induced and adoptively transferred EAE, infiltrates consisted of many CD3+, TCR alpha beta+, and CD4+ cells, fewer CD8+ cells, and small numbers of TCR gamma delta+ cells. Approximately 30% of CD45+ leukocytes in the inflammatory foci were T cells. Cells expressing TCR V beta 2, 3, 4, 6, 7 and 14 were detected in the infiltrates, whereas TCR V beta 8 and 11, which that are deleted in SJL mice, were absent. When EAE was induced by transfer of T cell clones that use either V beta 2, 6, 10, or 17, there was also a heterogeneous accumulation of T cells in the lesions. Similar proportions of TCR V beta+ and gamma delta+ cells were detected in EAE lesions and in the spleens of the mice. Thus, at the time that clinical signs are present in acute EAE, peripherally derived, heterogeneous TCR V beta+ cells are found in CNS lesions, even when the immune response is initiated to a short peptide Ag or by a T cell clone using a single TCR V beta.  相似文献   

9.
The chemokine receptor CXCR3 promotes the trafficking of activated T and NK cells in response to three ligands, CXCL9, CXCL10, and CXCL11. Although these chemokines are produced in the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), their role in the pathogenesis of CNS autoimmunity is unresolved. We examined the function of CXCR3 signaling in EAE using mice that were deficient for CXCR3 (CXCR3(-/-)). The time to onset and peak disease severity were similar for CXCR3(-/-) and wild-type (WT) animals; however, CXCR3(-/-) mice had more severe chronic disease with increased demyelination and axonal damage. The inflammatory lesions in WT mice consisted of well-demarcated perivascular mononuclear cell infiltrates, mainly in the spinal cord and cerebellum. In CXCR3(-/-) mice, these lesions were more widespread throughout the CNS and were diffused and poorly organized, with T cells and highly activated microglia/macrophages scattered throughout the white matter. Although the number of CD4(+) and CD8(+) T cells infiltrating the CNS were similar in CXCR3(-/-) and WT mice, Foxp3(+) regulatory T cells were significantly reduced in number and dispersed in CXCR3(-/-) mice. The expression of various chemokine and cytokine genes in the CNS was similar in CXCR3(-/-) and WT mice. The genes for the CXCR3 ligands were expressed predominantly in and/or immediately surrounding the mononuclear cell infiltrates. We conclude that in EAE, CXCR3 signaling constrains T cells to the perivascular space in the CNS and augments regulatory T cell recruitment and effector T cell interaction, thus limiting autoimmune-mediated tissue damage.  相似文献   

10.
The inflammatory response in the CNS begins with the movement of leukocytes across the blood-brain barrier in a multistep process that requires cells to pass through a perivascular space before entering the parenchyma. The molecular mechanisms that orchestrate this movement are not known. The chemokine CXCL12 is highly expressed throughout the CNS by microendothelial cells under normal conditions, suggesting it might play a role maintaining the blood-brain barrier. We tested this hypothesis in the setting of experimental autoimmune encephalomyelitis (EAE) by using AMD3100, a specific antagonist of the CXCL12 receptor CXCR4. We demonstrate that the loss of CXCR4 activation enhances the migration of infiltrating leukocytes into the CNS parenchyma. CXCL12 is expressed at the basolateral surface of CNS endothelial cells in normal spinal cord and at the onset of EAE. This polarity is lost in vessels associated with an extensive parenchymal invasion of mononuclear cells during the peak of disease. Inhibition of CXCR4 activation during the induction of EAE leads to loss of the typical intense perivascular cuffs, which are replaced with widespread white matter infiltration of mononuclear cells, worsening the clinical severity of the disease and increasing inflammation. Taken together, these data suggest a novel anti-inflammatory role for CXCL12 during EAE in that it functions to localize CXCR4-expressing mononuclear cells to the perivascular space, thereby limiting the parenchymal infiltration of autoreactive effector cells.  相似文献   

11.
To analyze immunopathologic events within the central nervous system (CNS) during various stages of actively induced chronic relapsing EAE in SJL/J mice, animals were sampled at various timepoints post inoculation (PI) and T cells, T-cell subsets, Ia+ cells and Ig+ cells, albumin, and Ig deposits were localized in frozen sections by immunocytochemical techniques. Furthermore, sections were stained for the demonstration of Ia antigen, myelin basic protein (MBP), and galactocerebroside (GC) on endothelial cells and astrocytes. During the acute phase of the disease, large numbers of all types of inflammatory cells studied (Lyt-1.2+, L3T4+, Lyt-2+, Ia+, Ig+) were randomly distributed throughout lesions, a finding similar to that described previously for acute EAE. A more distinct distribution pattern of infiltrating T cells was found during active chronic disease in that L3T4+ cells predominated within the CNS parenchyma, while Lyt-2+ cells were more numerous in meningeal and perivascular areas. During all chronic stages, a low-grade diffuse infiltration of the neuraxis by hematogenous cells was present. Ia and myelin antigens were detectable on some endothelial cells and astrocytes. Damage to the blood-brain barrier, as indicated by albumin and Ig deposits, was more extensive during the acute than during chronic stages of the disease. Taken in concert, the results further support the possibility of local antigen presentation on endothelial and astroglial cells and an essential involvement of helper (L3T4+) T cells in CNS lesion formation. These findings correlate well with events reported previously in acute and chronic multiple sclerosis lesions.  相似文献   

12.
Using a monoclonal antibody against guinea pig T cells and anti-guinea pig immunoglobulins, T- and B-cell dynamics were studied by immunofluorescence in situ in the central nervous system (CNS) of animals with untreated and treated chronic relapsing experimental allergic encephalomyelitis (EAE). Treated animals were given a series of injections of either myelin basic protein (MBP) in incomplete Freund's adjuvant (IFA) or MBP and galactocerebroside in IFA. Within the CNS, T and B cells showed distinct distribution patterns in untreated chronic relapsing EAE, similar to that recently described in acute EAE. T cells were predominantly localized within the CNS parenchyma and B cells were mainly found in perivascular areas. B-cell infiltrates were more extensive than in acute EAE and, although most were centered around blood vessels, some were also detectable in the parenchyma. IgG, C3, and albumin deposits were common. These observations suggest an age-dependent difference in the immune response. In treated chronic EAE, the disease process was apparently arrested and T- and B-cell infiltrates in the white matter were negligible. Therefore, it appears that the present treatment protocol prevents lymphocytes from entering the CNS parenchyma.  相似文献   

13.
The scavenger receptor that binds phosphatidylserine and oxidized lipoprotein (SR-PSOX)/CXCL16 is a chemokine expressed on macrophages and dendritic cells, while its receptor expresses on T and NK T cells. We investigated the role of SR-PSOX/CXCL16 on acute and adoptive experimental autoimmune encephalomyelitis (EAE), which is Th1-polarized T cell-mediated autoimmune disease of the CNS. Administration of mAb against SR-PSOX/CXCL16 around the primary immunization decreased disease incidence of acute EAE with associated reduced infiltration of mononuclear cells into the CNS. Its administration was also shown to inhibit elevation of serum IFN-gamma level at primary immune response, as well as subsequent generation of Ag-specific T cells. In adoptive transfer EAE, treatment of recipient mice with anti-SR-PSOX/CXCL16 mAb also induced not only decreased clinical disease incidence, but also diminished traffic of mononuclear cells into the CNS. In addition, histopathological analyses showed that clinical development of EAE correlates well with expression of SR-PSOX/CXCL16 in the CNS. All the results show that SR-PSOX/CXCL16 plays important roles in EAE by supporting generation of Ag-specific T cells, as well as recruitment of inflammatory mononuclear cells into the CNS.  相似文献   

14.
In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the endothelial blood-brain barrier (BBB) and gain access to the CNS. It is well-established that alpha4 integrins are actively involved in leukocyte recruitment across the BBB during EAE. In contrast, the role of endothelial E- and P-selectin in this process has been a controversial issue. In this study, we demonstrate that P-selectin protein can be detected in meningeal blood vessel endothelial cells in healthy SJL and C57BL/6 mice and on rare parenchymal CNS blood vessels in C57BL/6, but not SJL, mice. During EAE, expression of P-selectin but not E-selectin was found up-regulated on inflamed CNS microvessels surrounded by inflammatory infiltrates irrespective of their meningeal or parenchymal localization with a more prominent immunostaining detected in C57BL/6 as compared with SJL mice. P-selectin immunostaining could be localized to CNS endothelial cells and to CD41-positive platelets adhering to the vessel wall. Despite the presence of P-selectin in wild-type mice, E/P-selectin-deficient SJL and C57BL/6 mice developed clinical EAE indistinguishable from wild-type mice. Absence of E- and P-selectin did neither influence the activation of myelin-specific T cells nor the composition of the cellular infiltrates in the CNS during EAE. Finally, endothelial-specific tetracycline-inducible expression of E-selectin at the BBB in transgenic C57BL/6 mice did not alter the development of EAE. Thus, E- and P-selectin are not required for leukocyte recruitment across the BBB and the development of EAE in C57BL/6 and in SJL mice.  相似文献   

15.
Ninjurin1 (nerve injury-induced protein, Ninj1) is an adhesion molecule that is essential for cell-to-cell interactions. However, little is known about the function of Ninj1 in the central nervous system (CNS). To address its role in the CNS, we analyzed the expression pattern of Ninj1 in normal rats and in an experimental autoimmune encephalomyelitis (EAE) model. Ninj1 was expressed in three major compartments of brains, meninges, the choroid plexus, and parenchymal perivascular spaces. In the EAE brains, Ninj1 was strongly expressed in myeloid cells (macrophages/monocytes and neutrophils) and partially expressed in endothelial cells (ECs). Furthermore, Ninj1 enhanced adhesion between BV2 cells (murine monocyte lineage microglia) and HBMECs (human brain microvascular endothelial cells). Collectively, our findings suggest that Ninj1 may mediate the entry of myeloid cells into the CNS in normal and EAE brains, and it is a potential therapeutic target for regulating myeloid cell trafficking across the blood-brain barrier (BBB) in CNS immune processes.  相似文献   

16.
Metalloproteinases (MPs) include matrix metalloproteinases (MMPs) and metalloproteinase-disintegrins (ADAMs). Their physiological inhibitors are tissue inhibitor of metalloproteinases (TIMPs). MPs are thought to be mediators of cellular infiltration in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant and >3-fold alteration in expression was observed for MMP-8, MMP-10, MMP-12, ADAM-12, and TIMP-1, which were up-regulated, and for MMP-15, which was down-regulated. Expression levels correlated with disease course, with all but ADAM-12 returning toward control levels in remission. To examine potential cellular sources of these strongly affected proteins in the inflamed CNS, we isolated macrophages, granulocytes, microglia, and T cells by cell sorting from the CNS of mice with EAE and analyzed their expression by real-time RT-PCR. This identified macrophages as a major source of MMP-12 and TIMP-1. Granulocytes were a major source of MMP-8. ADAM-12 was expressed primarily by T cells. Cellular localization of MMP-10, TIMP-1, and ADAM-12 in perivascular infiltrates was confirmed by immunostaining or in situ hybridization. Microglia from control mice expressed strong signal for MMP-15. Strikingly, the expression of MMP-15 by microglia was significantly down-regulated in EAE, which was confirmed by immunostaining. Our study identifies the cellular sources of key MPs in CNS inflammation.  相似文献   

17.
Rejection of fetal neocortical neural transplants by H-2 incompatible mice   总被引:3,自引:0,他引:3  
In order to examine questions concerning immunologic privilege of the central nervous system, we placed neocortical transplants into cerebral ventricles of mice. We compared the fates of transplants between fully H-2 compatible (isografts) and H-2 incompatible (allografts) animals. Histologic evaluation comparing animals from iso- and allograft groups revealed significant differences in the number of inflammatory cells and in the degree of necrosis within the grafts. Response to allografted tissue within the brain mimics that seen in several immune-mediated diseases of the nervous system in that neurons appear to be selectively spared. Only upon subsequent stimulation of the host's immune system with an orthotopic skin graft bearing the major histocompatibility complex antigens of the neural graft are neurons destroyed. Immunohistochemical evaluation revealed that the inflammatory cell infiltrates in and around the allografts were composed of Lyt-2+, L3T4+, and Mac-1+ cells. In addition, Ia+ endothelial cells as well as Ia+ parenchymal CNS cells were found in both donor and host tissue of allografted animals. Hence, H-2 incompatible neural tissue transplanted to the CNS is recognized and rejected by the immune system of the recipient animal. The cellular infiltrates seen within the first weeks to months following transplantation of allogeneic CNS tissue resemble those seen in other allografts undergoing rejection. We conclude that the CNS is not unconditionally privileged as either a transplant site or as a source of transplanted tissue.  相似文献   

18.
To investigate early immunopathologic events, SJL/J mice were challenged for acute experimental autoimmune encephalomyelitis (EAE) and sampled between 12 hr and 14 days postinoculation (PI). Complete Freund's adjuvant (CFA)-inoculated mice served as controls. T cells, T cell subsets, Class II major histocompatibility (MHC) antigen (Ia)-positive and immunoglobulin (Ig)-positive cells, albumin and Ig deposits, and myelin antigens were localized in frozen sections of central nervous system (CNS) and non-CNS tissue (heart, liver, kidney) by immunocytochemical techniques. In both experimental groups, a few Ia-positive endothelial cells and low-grade diffuse infiltration by T cells, T cell subsets, and Ia+ and Ig+ cells were seen from 12 hr PI onward in CNS and non-CNS tissue. Only in acute EAE but not in CFA-challenged mice were these early changes followed at 10 days PI by extensive inflammation which was restricted to the CNS and was accompanied by Ia-positive astrocytes. Thus, in acute EAE, immunopathologic changes appear to develop in two stages. During the early low-grade generalized phase, recirculation of lymphocytes is moderately enhanced while during the late phase, extensive immunopathology is focused upon the target organ, the CNS.  相似文献   

19.
Dynamic interplay between cytokines and chemokines directs trafficking of leukocyte subpopulations to tissues in autoimmune inflammation. We have examined the role of IFN-gamma in directing chemokine production and leukocyte infiltration to the CNS in experimental autoimmune encephalomyelitis (EAE). BALB/c and C57BL/6 mice are resistant to induction of EAE by immunization with myelin basic protein. However, IFN-gamma-deficient (BALB/c) and IFN-gammaR-deficient (C57BL/6) mice developed rapidly progressing lethal disease. Widespread demyelination and disseminated leukocytic infiltration of spinal cord were seen, unlike the focal perivascular infiltrates in SJL/J mice. Gr-1+ neutrophils predominated in CNS, and CD4+ T cells with an activated (CD69+, CD25+) phenotype and eosinophils were also present. RANTES and macrophage chemoattractant protein-1, normally up-regulated in EAE, were undetectable in IFN-gamma- and IFN-gammaR-deficient mice. Macrophage inflammatory protein-2 and T cell activation gene-3, both neutrophil-attracting chemokines, were strongly up-regulated. There was no induction of the Th2 cytokines, IL-4, IL-10, or IL-13. RNase protection assays and RT-PCR showed the prevalence of IL-2, IL-3, and IL-15, but no increase in IL-12p40 mRNA levels in IFN-gamma- or IFN-gammaR-deficient mice with EAE. Lymph node cells from IFN-gamma-deficient mice proliferated in response to myelin basic protein, whereas BALB/c lymph node cells did not. These findings show a regulatory role for IFN-gamma in EAE, acting on T cell proliferation and directing chemokine production, with profound implications for the onset and progression of disease.  相似文献   

20.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) Th1-mediated demyelinating disease of the CNS that serves as a model for multiple sclerosis. A critical event in the pathogenesis of EAE is the entry of both Ag-specific and Ag-nonspecific T lymphocytes into the CNS. In the present report, we investigated the role of the CXC chemokine CXCL10 (IFN-gamma-inducible protein-10) in the pathogenesis of EAE. Production of CXCL10 in the CNS correlated with the development of clinical disease. Administration of anti-CXCL10 decreased clinical and histological disease incidence, severity, as well as infiltration of mononuclear cells into the CNS. Anti-CXCL10 specifically decreased the accumulation of encephalitogenic PLP(139-151) Ag-specific CD4+ T cells in the CNS compared with control-treated animals. Anti-CXCL10 administration did not affect the activation of encephalitogenic T cells as measured by Ag-specific proliferation and the ability to adoptively transfer EAE. These results demonstrate an important role for the CXC chemokine CXCL10 in the recruitment and accumulation of inflammatory mononuclear cells during the pathogenesis of EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号