首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-way junctions (3H) are the simplest and most commonly occurring branched nucleic acids. They consist of three double helical arms (A to C), connected at the junction point, with or without a number of unpaired bases in one or more of the three different strands. Three-way junctions with two unpaired bases in one strand (3HS2) have a high tendency to adopt either of two alternative stacked conformations in which two of the three arms A, B and C are coaxially stacked, i.e. A/B-stacked or A/C-stacked. Empirical stacking rules, which successfully predict for DNA 3HS2 A/B-stacking preference from sequence, have been extended to A/C-stacked conformations. Three novel DNA 3HS2 sequences were designed to test the validity of these extended stacking rules and their conformational behavior was studied by solution NMR. All three show the predicted A/C-stacking preference even in the absence of multivalent cations. The stacking preference for both classes of DNA 3HS2 can thus be predicted from sequence. The high-resolution NMR solution structure for one of the stacked 3HS2 is also reported. It shows a well-defined local and global structure defined by an extensive set of classical NMR restraints and residual dipolar couplings. Analysis of its global conformation and that of other representatives of the 3H family, shows that the relative orientations of the stacked and non-stacked arms, are restricted to narrow regions of conformational space, which can be understood from geometric considerations. Together, these findings open up the possibility of full prediction of 3HS2 conformation (stacking and global fold) directly from sequence.  相似文献   

2.
Structures of bulged three-way DNA junctions.   总被引:5,自引:3,他引:2       下载免费PDF全文
We have studied a series of three-way DNA junctions containing unpaired bases on one strand at the branch-point of the junctions. The global conformation of the arms of the junctions has been analysed by means of polyacrylamide gel electrophoresis, as a function of conditions. We find that in the absence of added metal ions, all the results for all the junctions can be accounted for by extended structures, with the largest angle being that between the arms defined by the strand containing the extra bases. Upon addition of magnesium (II) or hexamine cobalt (III) ions, the electrophoretic patterns change markedly, indicative of ion-dependent folding transitions for some of the junctions. For the junction lacking the unpaired bases, the three inter-arm angles appear to be quite similar, suggesting an extended structure. However, the addition of unpaired bases permits the three-way junction to adopt a significantly different structure, in which one angle becomes smaller than the other two. These species also exhibit marked protection against osmium addition to thymine bases at the point of strand exchange. These results are consistent with a model in which two of the helical arms undergo coaxial stacking in the presence of magnesium ions, with the third arm defining an angle that depends upon the number of unpaired bases.  相似文献   

3.
Competition binding and UV melting studies of a DNA model system consisting of three, four or five mutually complementary oligonucleotides demonstrate that unpaired bases at the branch point stabilize three- and five-way junction loops but destabilize four-way junctions. The inclusion of unpaired nucleotides permits the assembly of five-way DNA junction complexes (5WJ) having as few as seven basepairs per arm from five mutually complementary oligonucleotides. Previous work showed that 5WJ, having eight basepairs per arm but lacking unpaired bases, could not be assembled [Wang, Y.L., Mueller, J.E., Kemper, B. and Seeman, N.C. (1991) Biochemistry, 30, 5667-5674]. Competition binding experiments demonstrate that four-way junctions (4WJ) are more stable than three-way junctions (3WJ), when no unpaired bases are included at the branch point, but less stable when unpaired bases are present at the junction. 5WJ complexes are in all cases less stable than 4WJ or 3WJ complexes. UV melting curves confirm the relative stabilities of these junctions. These results provide qualitative guidelines for improving the way in which multi-helix junction loops are handled in secondary structure prediction programs, especially for single-stranded nucleic acids having primary sequences that can form alternative structures comprising different types of junctions.  相似文献   

4.
Non-paired nucleotides stabilize the formation of three-way helical DNA junctions. Two or more unpaired nucleotides located in the junction region enable oligomers ten to fifteen nucleotides long to assemble, forming conformationally homogeneous junctions, as judged by native gel electrophoresis. The unpaired bases can be present on the same strand or on two different strands. Up to five extra bases on one strand have been tested and found to produce stable junctions. The formation of stable structures is favored by the presence of a divalent cation such as magnesium and by high monovalent salt concentration. The order-disorder transition of representative three-way junctions was monitored optically in the ultraviolet and analyzed to quantify thermodynamically the stabilization provided by unpaired bases in the junction region. We report the first measurements of the thermodynamics of adding an unpaired nucleotide to a nucleic acid three-way junction. We find that delta delta G degrees (37 degrees C) = +0.5 kcal/mol for increasing the number of unpaired adenosines from two to three. Three-way junctions having reporter arms 40 base-pairs long were also prepared. Each of the three reporter arms contained a unique restriction site 15 base-pairs from the junction. Asymmetric complexes produced by selectively cleaving each arm were analyzed on native gels. Cleavage of the double helical arm opposite the strand having the two extra adenosines resulted in a complex that migrated more slowly than complexes produced by cleavage at either of the other two arms. It is likely that the strand containing the unpaired adenosines is kinked at an acute angle, forming a Y-shaped, rather than a T-shaped junction.  相似文献   

5.
Translation is initiated within the RNA of the hepatitis C virus at the internal ribosome entry site (IRES). The IRES is a 341-nucleotide element that contains a four-way helical junction (IIIabc) as a functionally important element of the secondary structure. The junction has three additional, nonpaired nucleotides at the point of strand exchange on one diagonal. We have studied the global conformation and folding of this junction in solution, using comparative gel electrophoresis and steady-state and time-resolved fluorescence resonance energy transfer. In the absence of divalent metal ions, the junction adopts an extended-square structure, in contrast to perfect four-way RNA junctions, which retain coaxial helical stacking under all conditions. The IIIabc junction is induced to fold on addition of Mg(2+), by pairwise coaxial stacking of arms, into the conformer in which the unpaired bases are located on the exchanging strands. Fluorescence lifetime measurements indicate that in the presence of Mg(2+) ions, the IIIabc junction exists in a dynamic equilibrium comprising approximately equal populations of antiparallel and parallel species. These dynamic properties may be important in mediating interactions between the IRES and the ribosome and initiation factors.  相似文献   

6.
Homonuclear 3D NOESY-NOESY has shown great promise for the structural refinement of large biomolecules. A computationally efficient hybrid-hybrid relaxation matrix refinement methodology, using 3D NOESY-NOESY data, was used to refine the structure of a DNA three-way junction having two unpaired bases at the branch point of the junction. The NMR data and the relaxation matrix refinement confirm that the DNA three-way junction exists in a folded conformation with two of the helical stems stacked upon each other. The third unstacked stem extends away from the junction, forming an acute angle (60° ) with the stacked stems. The two unpaired bases are stacked upon each other and are exposed to the solvent. Helical parameters for the bases in all three strands show slight deviations from typical values expected for right-handed B-form DNA. Inter-nucleotide imino-imino NOEs between the bases at the branch point of the junction show that the junction region is well defined. The helical stems show mobility (± 20° ) indicating dynamic processes around the junction region. The unstacked helical stem adjacent to the unpaired bases shows greater mobility compared to the other two stems. The results from this study indicate that the 3D hybrid-hybrid matrix MORASS refinement methodology, by combining the spectral dispersion of 3D NOESY-NOESY and the computational efficiency of 2D refinement programs, provides an accurate and robust means for structure determination of large biomolecules. Our results also indicate that the 3D MORASS method gives higher quality structures compared to the 2D complete relaxation matrix refinement method.  相似文献   

7.
The four-way DNA junction is believed to fold in the presence of metal ions into an X-shaped structure, in which there is pairwise coaxial stacking of helical arms. A restriction enzyme MboII has been used to probe this structure. A junction was constructed containing a recognition site for MboII in one helical arm, positioned such that stacking of arms would result in cleavage in a neighbouring arm. Strong cleavage was observed, at the sites expected on the basis of coaxial stacking. An additional cleavage was seen corresponding to the formation of an alternative stacking isomer, suggesting that the two isomeric forms are in dynamic equilibrium in solution.  相似文献   

8.
The proton NMR spectra of DNA three-way junction complexes (TWJ) having unpaired pyrimidines, 5'-TT- and 5'-TC- on one strand at the junction site were assigned from 2D NOESY spectra acquired in H2O and D2O solvents and homonuclear 3D NOESY-TOCSY and 3D NOESY-NOESY in D2O solvent. TWJ are the simplest branched structures found in biologically active nucleic acids. Unpaired nucleotides are common features of such structures and have been shown to stabilize junction formation. The NMR data confirm that the component oligonucleotides assemble to form conformationally homogeneous TWJ complexes having three double-helical, B-form arms. Two of the helical arms stack upon each other. The unpaired pyrimidine bases lie in the minor groove of one of the helices and are partly exposed to solvent. The coaxial stacking arrangement deduced is different from that determined by Rosen and Patel (Rosen, M.A., and D.J. Patel. 1993. Biochemistry. 32:6576-6587) for a DNA three-way junction having two unpaired cytosines, but identical to that suggested by Welch et al. (Welch, J. B., D. R. Duckett, D. M. J. Lilley. 1993. Nucleic Acids Res. 21:4548-4555) on the basis of gel electrophoretic studies of DNA three-way junctions containing unpaired adenosines and thymidines.  相似文献   

9.
An improved set of infrared calibration spectra for the determination of G X C and A X U base pairs leads to 32 +/- 3 G X C (+ G X U) and 4 +/- 1 A X U base pairs for Thermus thermophilus 5S RNA in the presence and absence of Mg2+. These results give further support for the consensus secondary structure of 5S RNA recently proposed by several groups. T. thermophilus 5S RNA shows, in the presence of Mg2+, a distinct two-step thermal melting of its ordered structure. Based on new data about the stacking dependence of infrared intensities of unpaired ribonucleotides the spectral changes of the low-temperature transition should be explained by melting of stacked arrangements of unpaired bases and/or non-standard base pairs. Striking is the reduction in A stacking, which is not related to the melting of A X U base pairs, indicating the importance of the mostly conserved unpaired adenines for the Mg2+ stabilized higher-order structures especially within internal loops of 5S RNA.  相似文献   

10.
The coexistence of both A form and B form tracts and formation of an A-B junction in the oligomer d(GGGGGTTTTT).d(AAAAACCCCC) in saturated sodium chloride solution have been detected by Raman spectroscopy. The entire duplex adopts the familiar B-form conformation in aqueous solution at low salt concentrations (0.1M NaCl). In 6M NaCl the adoption of an A form is observed within the G,C tract while a B-form is maintained in the A.T tract. The experimental results indicate that two different helical forms can co-exist in a rather short oligonucleotide and that formation of an A-B junction can occur over a fairly small span of bases. This is in agreement with recent rules governing the relation between base sequence and secondary structure of DNA published from this laboratory. The conformational preferences of each of the individual oligomers d(AAAAACCCCC) and d(GGGGGTTTTT) have also been investigated. The oligomer d(AAAAACCCCC) is single stranded but some evidence for base stacking is observed at 2 degrees C. In contrast, a double stranded B-form structure characterized by wobble G-T base pairing is observed for d(GGGGGTTTTT) in 0.1M and 6M NaCl.  相似文献   

11.
Free energies for stacking of unpaired nucleotides (dangling ends) at the termini of oligoribonucleotide Watson-Crick helixes (DeltaG(0)37,stack) depend on sequence for 3' ends but are always small for 5' ends. Here, these free energies are correlated with stacking at helix termini in a database of 34 RNA structures determined by X-ray crystallography and NMR spectroscopy. Stacking involving GA pairs is considered separately. A base is categorized as stacked by its distance from (相似文献   

12.
We have refined a series of isomorphous crystal structures of the Escherichia coli DNA mismatch repair enzyme MutS in complex with G:T, A:A, C:A and G:G mismatches and also with a single unpaired thymidine. In all these structures, the DNA is kinked by ~60° upon protein binding. Two residues widely conserved in the MutS family are involved in mismatch recognition. The phenylalanine, Phe 36, is seen stacking on one of the mismatched bases. The same base is also seen forming a hydrogen bond to the glutamate Glu 38. This hydrogen bond involves the N7 if the base stacking on Phe 36 is a purine and the N3 if it is a pyrimidine (thymine). Thus, MutS uses a common binding mode to recognize a wide range of mismatches.  相似文献   

13.
Loop stereochemistry and dynamics in transfer RNA   总被引:6,自引:0,他引:6  
The stereochemistry and the dynamics of two loops of yeast tRNA-asp, the thymine loop and the anticodon loop, are compared in the hope of a better understanding of the relationships between loop sequence and loop topology. Both loops are seven residues long and both present sharp turns after the second residue, U33 and psi 55, stabilized by hydrogen bonds between N3-H of the pyrimidine and the phosphates of C36 and A58 and stacking interactions of the pyrimidine ring with the phosphates of U35 and A57, respectively. In the thymine loop, the two purines following C56, A57 and A58, open up to leave space for the intercalation of the first invariant guanine residue of the D-loop, while the two pyrimidine bases, which follow A58, turn away from the stacking pattern of the thymine arm and stack instead with the last base pair of the dihydrouridine arm A15-U48. In the anticodon loop, however, the bases G34 to C38 form an helical stack in continuity with the anticodon stem on the 3'-end. At the same time C36 forms Watson-Crick hydrogen bonds with G34 of a twofold symmetrically related molecule. The anticodon-anticodon base pairing interactions between symmetrically-related molecules are stabilized by stacking with the modified base G37 on both sides of the triplet. Some comparisons are made with the structure of yeast tRNA-phe and some implications about the structure of mitochondrial tRNAs are discussed.  相似文献   

14.
Abstract

The coexistence of both A form and B form tracts and formation of an A-B junction in the oligomer d(GGGGGTTTTT)· d(AAAAACCCCC) in saturated sodium chloride solution have been detected by Raman spectroscopy. The entire duplex adopts the familiar B-form conformation in aqueous solution at low salt concentrations (0.1M NaCl). In 6M NaCl the adoption of an A form is observed within the G,C tract while a B-form is maintained in the A,T tract. The experimental results indicate that two different helical forms can co-exist in a rather short oligonucleotide and that formation of an A-B junction can occur over a fairly small span of bases. This is in agreement with recent rules governing the relation between base sequence and secondary structure of DNA published from this laboratory.

The conformational preferences of each of the individual oligomers d(AAAAACCCCC) and d(GGGGGTTTTT) have also been investigated. The oligomer d(AAAAACCCCC) is single stranded but some evidence for base stacking is observed at 2°C. In contrast, a double stranded B-form structure characterized by wobble G-T base pairing is observed for d(GGGGGTTTTT) in 0.1M and 6M NaCl.  相似文献   

15.
We have studied the structure of a number of three-way DNA junctions that were closely related in sequence to four-way junctions studied previously. We observe that the electrophoretic mobility of the species derived by selective shortening of one arm of a junction are very similar whichever arm is shortened, and that this remains so whether or not magnesium is present in the buffer. This suggests that the angles subtended between the arms of the three-way junctions are similar. All thymine bases located immediately at the junction are reactive to osmium tetroxide, indicating that out-of-plane attack is not prevented by helix-helix stacking, and this is also independent of the presence or absence of metal cations. The results suggest that the three-way junction cannot undergo an ion-induced conformational folding involving helical stacking, but remains fixed in a Y-shaped extended conformation. Thus the three- and four-way junctions are quite different in character in the presence of cations.  相似文献   

16.
We have refined the structure of the DNA Three-Way Junction complex, TWJ-TC, described in the companion paper by quantitative analysis of two 2D NOESY spectra (mixing times 60 and 200 ms) obtained in D2O solution. NOESY crosspeak intensities extracted from these spectra were used in two kinds of refinement procedure: 1) distance-restrained energy minimization (EM) and molecular dynamics (MD) and 2) full relaxation matrix back calculation refinement. The global geometry of the refined model is very similar to that of a published, preliminary model (Leontis, 1993). Two of the helical arms of the junction are stacked. These are Helix 1, defined by basepairs S1-G1/S3-C12 through S1-C5/S3-G8 and Helix 2, which comprises basepairs S1-C6/S2-G5 through S1-G10/S2-G1. The third helical arm (Helix 3), comprised of basepairs S2-C6/S3-G5 through S2-C10/S3-G1 extends almost perpendicularly from the axis defined by Helices 1 and 2. The bases S1-C5 and S1-C6 of Strand 1 are continuously stacked across the junction region. The conformation of this strand is close to that of B-form DNA along its entire length, including the S1-C5 to S1-C6 dinucleotide step at the junction. The two unpaired bases S3-T6 and S3-C7 lie outside of the junction along the minor groove of Helix 1 and largely exposed to solvent. Analysis of the refined structure reveals that the glycosidic bond of S3-T6 exists in the syn conformation, allowing the methyl group of this residue to contact the hydrophobic surface of the minor groove of Helix 1, at S3-G11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract

The stereochemistry and the dynamics of two loops of yeast tRNA-asp, the thymine loop and the anticodon loop, are compared in the hope of a better understanding of the relationships between loop sequence and loop topology. Both loops are seven residues long and both present sharp turns after the second residue, U33 and ψ55, stabilized by hydrogen bonds between N3-H of the pyrimidine and the phosphates of C36 and A58 and stacking interactions of the pyrimidine ring with the phosphates of U35 and A57, respectively. In the thymine loop, the two purines following C56, A57 and A58, open up to leave space for the intercalation of the first invariant guanine residue of the D-loop, while the two pyrimidine bases, which follow A58, turn away from the stacking pattern of the thymine arm and stack instead with the last base pair of the dihydrouridine arm A15-U48. In the anticodon loop, however, the bases G34 to C38 form an helical stack in continuity with the anticodon stem on the 3′-end. At the same time C36 forms Watson-Crick hydrogen bonds with G34 of a twofold symmetrically related molecule. The anticodon-anticodon base pairing interactions between symmetrically-related molecules are stabilized by stacking with the modified base G37 on both sides of the triplet. Some comparisons are made with the structure of yeast tRNA-phe and some implications about the structure of mitochondrial tRNAs are discussed.  相似文献   

18.
In 1985 an analysis of the Escherichia coli 16 S rRNA covariation-based structure model revealed a strong bias for unpaired adenosines. The same analysis revealed that the majority of the G, C, and U bases were paired. These biases are (now) consistent with the high percentage of unpaired adenosine nucleotides in several structure motifs.An analysis of a larger set of bacterial comparative 16 S and 23 S rRNA structure models has substantiated this initial finding and revealed new biases in the distribution of adenosine nucleotides in loop regions. The majority of the adenosine nucleotides are unpaired, while the majority of the G, C, and U bases are paired in the covariation-based structure model. The unpaired adenosine nucleotides predominate in the middle and at the 3' end of loops, and are the second most frequent nucleotide type at the 5' end of loops (G is the most common nucleotide). There are additional biases for unpaired adenosine nucleotides at the 3' end of loops and adjacent to a G at the 5' end of the helix. The most prevalent consecutive nucleotides are GG, GA, AG, and AA. A total of 70 % of the GG sequences are within helices, while more than 70 % of the AA sequences are unpaired. Nearly 50 % of the GA sequences are unpaired, and approximately one-third of the AG sequences are within helices while another third are at the 3' loop.5' helix junction. Unpaired positions with an adenosine nucleotide in more than 50 % of the sequences at the 3' end of 16 S and 23 S rRNA loops were identified and arranged into the A-motif categories XAZ, AAZ, XAG, AAG, and AAG:U, where G or Z is paired, G:U is a base-pair, and X is not an A and Z is not a G in more than 50 % of the sequences. These sequence motifs were associated with several structural motifs, such as adenosine platforms, E and E-like loops, A:A and A:G pairings at the end of helices, G:A tandem base-pairs, GNRA tetraloop hairpins, and U-turns.  相似文献   

19.
Interstrand DNA cross-link damage is a severe challenge to genomic integrity. Nucleotide excision repair plays some role in the repair of DNA cross-links caused by psoralens and other agents. However, in mammalian cells there is evidence that the ERCC1-XPF nuclease has a specialized additional function during interstrand DNA cross-link repair, beyond its role in nucleotide excision repair. We placed a psoralen monoadduct or interstrand cross-link in a duplex, 4-6 bases from a junction with unpaired DNA. ERCC1-XPF endonucleolytically cleaved within the duplex on either side of the adduct, on the strand having an unpaired 3' tail. Cross-links that were cleaved only on the 5' side were purified and reincubated with ERCC1-XPF. A second cleavage was then observed on the 3' side. Relevant partially unwound structures near a cross-link may be expected to arise frequently, for example at stalled DNA replication forks. The results show that the single enzyme ERCC1-XPF can release one arm of a cross-link and suggest a novel mechanism for interstrand cross-link repair.  相似文献   

20.
The mouse mammary tumor virus (MMTV) gag-pro frameshifting pseudoknot is an H-type RNA pseudoknot that contains an unpaired adenosine (A14) at the junction of the two helical stems required for efficient frameshifting activity. The thermodynamics of folding of the MMTV vpk pseudoknot have been compared with a structurally homologous mutant RNA containing a G x U to G-C substitution at the helical junction (U13C RNA), and an A14 deletion mutation in that context (U13CdeltaA14 RNA). Dual wavelength optical melting and differential scanning calorimetry reveal that the unpaired adenosine contributes 0.7 (+/-0.2) kcal mol(-1) at low salt and 1.4 (+/-0.2) kcal mol(-1) to the stability (deltaG(0)37) at 1 M NaCl. This stability increment derives from a favorable enthalpy contribution to the stability deltadeltaH = 6.6 (+/-2.1) kcal mol(-1) with deltadeltaG(0)37 comparable to that predicted for the stacking of a dangling 3' unpaired adenosine on a G-C or G x U base pair. Group 1A monovalent ions, NH4+, Mg2+, and Co(NH3)6(3+) ions stabilize the A14 and deltaA14 pseudoknots to largely identical extents, revealing that the observed differences in stability in these molecules do not derive from a differential or specific accumulation of ions in the A14 versus deltaA14 pseudoknots. Knowledge of this free energy contribution may facilitate the prediction of RNA pseudoknot formation from primary nucleotide sequence (Gultyaev et al., 1999, RNA 5:609-617).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号