首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Design, synthesis and DNA binding activities of two peptides containing 32 and 102 residues are reported. A nonlinear 102-residue peptide contains four modified alpha helix-turn-alpha helix motifs of 434 cro protein. These four units are linked covalently to a carboxyterminal crosslinker containing four arms each ending with an aliphatic amino group. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha-helical, beta-sheet and random-coiled conformations with the alpha-helical content of about 16% at room temperature. Upon complex formation between peptide and DNA, a change in the peptide conformation takes place which is consistent with an alpha - beta transition in the DNA binding alpha helix-turn-alpha helix units of the peptide. Similar conformation changes are observed upon complex formation with the synthetic operator of a linear peptide containing residues 7-37 of 434 cro repressor. Evidently, in the complex, residues present in helices alpha 2 and alpha 3 of the two helix motif form a beta-hairpin which is inserted in the minor DNA groove. The last inference is supported by our observations that the two peptides can displace the minor groove-binding antibiotic distamycin A from poly(dA).poly(dT) and synthetic operator DNA. As revealed from DNase digestion studies, the nonlinear peptide binds more strongly to a pseudooperator Op1, located in the cro gene, than to the operator OR3. A difference in the specificity shown by the non-linear peptide and wild-type cro could be attributed to a flexibility of the linker chains between the DNA-binding domains in the peptide molecule as well as to a replacement of Thr-Ala in the peptide alpha 2-helices. Removal of two residues from the N-terminus of helix alpha 2 in each of the four DNA-binding domains of the peptide leads to a loss of binding specificity.  相似文献   

2.
Design and synthesis of peptides capable of specific binding to DNA   总被引:1,自引:0,他引:1  
In the present communication, design, synthesis and DNA binding activities of the following two peptides are reported: Dns-Gly-Ala-Gln-Lys-Leu-Ala-Cly-Lys-Val-Gly-Thr-Lys-Val-Lys-Val-Gl y-Thr-Lys-Thr - Val-OH (I) and [(H-Ala-Lys-Leu-Ala-Thr-Lys-Ala-Gly-Val-Lys-Gln-Gln-Ser-Ile-Gln-Leu-Ile- Thr- Ala-Aca-Lys-Aca)2Lys-Aca]2Lys-Val-OH (II), where Aca = NH(CH2)5CO--; Dns is a residue of 5-dimethylaminonaphtalene-1-sulfonic acid. Peptide I contains a large fraction (ca.30%) of valyl and threonyl residues, which possess a high potential for beta structure formation. Peptide II contains four repeats of the amino acid sequence present in the presumed DNA binding helix-turn-helix unit of 434 Cro repressor. These four domains are linked in such a way that two domains can interact with two halves a 14 base pair long operator site on DNA. From CD studies we have found that peptide I is in a random coil conformation in the aqueous solution in the presence of 20% trifluoroethanol. By contrast, amino acid residues of peptide II assume alpha helical, beta and random coiled conformations under the same conditions. A change in the secondary structure of the two peptides upon binding to DNA is observed. The difference CD spectra obtained by subtracting the spectra of free DNA from the spectra of peptide I--DNA complexes gives rise to a beta-like pattern. The difference CD spectra obtained for complexes of peptide II with various natural and synthetic DNAs suggest that alpha-beta-transition takes place in the presumed helix-turn-helix repeat units of peptide II upon binding to DNA. Peptide I binds more strongly to poly(dG).poly(dC) than to poly(dA).poly(dT) and poly[d(GC)].poly[d(GC)]. The binding takes place in the minor DNA groove because minor groove binding antibiotic sibiromycin can displace peptide I from a complex with poly(dG).poly(dC). Analysis of footprinting diagramms shows that peptide I specifically protects phosphodiester bonds within operator sites OR1 and OR2 of phage lambda from nuclease cleavage. By contrast, peptide II does not react specifically with operators OR1, OR2 and OR3 of phage 434 although it forms very tight complexes with DNA which are stable in the presence of 1M NH4F.  相似文献   

3.
J Chen  S Pongor    A Simoncsits 《Nucleic acids research》1997,25(11):2047-2054
Single-chain derivatives of the phage 434 repressor, termed single-chain repressors, contain covalently dimerized DNA-binding domains (DBD) which are connected with a peptide linker in a head-to-tail arrangement. The prototype RR69 contains two wild-type DBDs, while RR*69 contains a wild-type and an engineered DBD. In this latter domain, the DNA- contacting amino acids of thealpha3 helix of the 434 repressor are replaced by the corresponding residues of the related P22 repressor. We have used binding site selection, targeted mutagenesis and binding affinity studies to define the optimum DNA recognition sequence for these single-chain proteins. It is shown that RR69 recognizes DNA sequences containing the consensus boxes of the 434 operators in a palindromic arrangement, and that RR*69 optimally binds to non-palindromic sequences containing a 434 operator box and a TTAA box of which the latter is present in most P22 operators. The spacing of these boxes, as in the 434 operators, is 6 bp. The DNA-binding of both single-chain repressors, similar to that of the 434 repressor, is influenced indirectly by the sequence of the non-contacted, spacer region. Thus, high affinity binding is dependent on both direct and indirect recognition. Nonetheless, the single-chain framework can accommodate certain substitutions to obtain altered DNA-binding specificity and RR*69 represents an example for the combination of altered direct and unchanged indirect readout mechanisms.  相似文献   

4.
Two DNA binding proteins, Cro and the amino-terminal domain of the repressor of bacteriophage 434 (434 Cro and 434 repressor) that regulate gene expression and contain a helix-turn-helix (HTH) motif responsible for their site-specific DNA recognition adopt very similar three-dimensional structures when compared to each other. To reveal structural differences between these two similar proteins, their dynamic structures, as examined by normal mode analysis, are compared in this paper. Two kinds of structural data, one for the monomer and the other for a complex with DNA, for each protein, are used in the analyses. From a comparison between the monomers it is found that the interactions of Ala-24 in 434 Cro or Val-24 in 434 repressor, both located in the HTH motif, with residues 44, 47, 48, and 51 located in the domain facing the motif, and the interactions between residues 17, 18, 28, and 32, located in the HTH motif, cause significant differences in the correlative motions of these residues. From the comparison between the monomer and the complex with DNA for each protein, it was found that the first helix in the HTH motif is distorted in the complex form. While the residues in the HTH motif in 434 Cro have relatively larger positive correlation coefficients of motions with other residues within the HTH motif, such correlations are not large in the HTH motif of 434 repressor. It is suggestive to their specificity because the 434 repressor is less specific than 434 Cro. Although a structural comparison of proteins has been performed mainly from a static or geometrical point of view, this study demonstrates that the comparison from a dynamic point of view, using the normal mode analysis, is useful and convenient to explore a difference that is difficult to find only from a geometrical point of view, especially for proteins very similar in structure. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Redesign of the bacteriophage 434 Cro repressor was accomplished by using an in vivo genetic screening system to identify new variants that specifically bound previously unrecognized DNA sequences. Site-directed, combinatorial mutagenesis of the 434 Cro helix-turn-helix (HTH) motif generated libraries of new variants which were screened for binding to new target sequences. Multiple mutations of 434 Cro that functionally converted wild-type (wt) 434 Cro DNA binding-sequence specificity to that of a lambda bacteriophage-specific repressor were identified. The libraries contained variations within the HTH sequence at only three positions. In vivo and in vitro analysis of several of the identified 434 Cro variants showed that the relatively few changes in the recognition helix of the HTH motif of 434 Cro resulted in specific and tight binding of the target DNA sequences. For the best 434 Cro variant identified, an apparent K(d) for lambda O(R)3 of 1 nM was observed. In competition experiments, this Cro variant was observed to be highly selective. We conclude that functional 434 Cro repressor variants with new DNA binding specificities can be generated from wt 434 Cro by mutating just the recognition helix. Important characteristics of the screening system responsible for the successful identifications are discussed. Application of the techniques presented here may allow the identification of DNA binding protein variants that functionally affect DNA regulatory sequences important in disease and industrial and biotechnological processes.  相似文献   

6.
Bacteriophage P22 Cro protein: sequence, purification, and properties   总被引:8,自引:0,他引:8  
The DNA sequence of part of the bacteriophage P22 early regulatory region, including genes cro and c1, was determined. The protein product of the cro gene consists of 61 amino acid residues, and that of c1, 92 amino acid residues. Both genes were placed separately in plasmids from which they are expressed from a controllable promoter in vivo. Induced cells bearing the cro-expressing plasmid were used as a source for purifying and characterizing the Cro protein. The amino-terminal sequence of this protein was found to be as predicted by the DNA sequence; close agreement was also observed between its predicted and experimentally determined amino acid composition and molar extinction coefficient at 280 nm. In gel filtration experiments, Cro protein at concentrations around 10(-5) M appears to have a molecular weight of 8600, which is more consistent with monomers (6800) than with dimers (13 600). Cro protein binds specifically to the three repressor binding sites in the P22 right operator; in order of decreasing affinity, these are OR3, OR1, and OR2.  相似文献   

7.
A comparative model building process has been utilized to predict the three-dimensional structure of the bacteriophage 434 Cro protein. Amino acid sequence similarities between the 434 Cro protein and other bacteriophage repressor and Cro proteins have been used, in conjunction with secondary structure prediction and the known structures of other base sequence specific DNA binding proteins, to derive the model. From this model the interactions between the 434 Cro protein and its operator DNA have been deduced. These proposed interactions are consistent with the known properties of the bacteriophage 434 Cro protein.  相似文献   

8.
Recognition of DNA structure by 434 repressor.   总被引:2,自引:1,他引:1       下载免费PDF全文
In complexes of bacteriophage 434 binding sites with 434 repressor the central 4 bp of the 14 bp site are not contacted by the protein, although changes in these bases alter binding site affinity for the repressor. Our previous data suggested that the ability of the non-contacted central bases to be overtwisted in repressor-DNA complexes governs affinity of the binding site for 434 repressor. This idea was tested by examining the affinity of two central sequence variant 434 binding sites for 434 repressor as a function of binding site average twist. The 434 repressor preferred the relatively overwound binding site to the two more underwound forms. The greatest affinity enhancement resulting from increasing twist was observed with a binding site that is relatively underwound and more resistant to twisting deformation. Consistent with the idea that 434 repressor overtwists its binding site upon DNA binding, we show that 434 repressor is capable of binding to sites bearing a single base insertion in their center (a 15mer), but binds poorly to binding sites bearing central base deletions (12mer and 13mer). The N-terminal dimer interface plays a large role in determining 434 repressor central base preferences. Mutations in this interface eliminate central base discrimination and/or site size preferences. These mutations also lead to changes in the size of the repressor footprint on the various sized DNA sites that are consistent with their binding characteristics.  相似文献   

9.
Abstract

A comparative model building process has been utilized to predict (he three-dimensional structure of the bacteriophage 434 Cro protein, Amino acid sequence similarities between the 434 Cro protein and other bacteriophage repressor and Cro proteins have been used, in conjunction with secondary structure prediction and the known structures of other base sequence specific DNA binding proteins, to derive the model. From this model the interactions between the 434 Cro protein and its operator DNA have been deduced. These proposed interactions are consistent with the known properties of the bacteriophage 434 Cro protein.  相似文献   

10.
A robust selection system affording phage display of the DNA-binding helix-turn-helix protein Cro is presented. The aim of the work was to construct an experimental system allowing for the construction and isolation of Cro-derived protein with new DNA-binding properties. A derivative of the phage lambda Cro repressor, scCro8, in which the protein subunits had been covalently connected via a peptide linker was expressed in fusion with the gene 3 protein of Escherichia coli filamentous phage. The phage-displayed single-chain Cro was shown to retain the DNA binding properties of its wild-type Cro counterpart regarding DNA sequence specificity and binding affinity. A kinetic analysis revealed the rate constant of dissociation of the single-chain Cro-phage/DNA complex to be indistinguishable from that of the free single-chain Cro. Affinity selection using a biotinylated DNA with a target consensus operator sequence allowed for a 3000-fold enrichment of phages displaying single-chain Cro over control phages. The selection was based on entrapment of phage/DNA complexes formed in solution on streptavidin-coated paramagnetic beads. The expression system was subsequently used to isolate variant scCro8 proteins, mutated in their DNA-binding residues, that specifically recognized new, unnatural target DNA ligands.  相似文献   

11.
Kinetic studies on Cro repressor-operator DNA interaction   总被引:14,自引:0,他引:14  
The six operators of phage lambda and their consensus sequence were synthesized as 21 base-pair DNAs and their interactions with Cro repressor were studied using a filter binding assay. The measured equilibrium dissociation constants suggest that Cro has the highest affinity to the consensus operator (KD = 1.2 X 10(-12) M) and then the OR3 operator (KD = 2.0 X 10(-12) M), after that the affinity becomes lower in the following order: OR1, OL1, OL2, OL3, OR2. The competition experiments show that Cro forms the most stable complex with the consensus operator (t1/2 = 150 min), which is followed by the complex with OR3 (t1/2 = 70 min), OR1, OL1, OL2, OL3 and OR2. The association rate constants (ka) were also measured. They are approximately the same (2 X 10(8) to 4 X 10(8) m-1 s-1) for the consensus, OR3, OR2 and OR1 operators. These experiments have thus shown that the sequence difference in the operator affects the dissociation (KD and kd) but not the association (ka) process. The operators' binding strengths relative to OR1 are 14 (for consensus operator), 7.6 (OR3), 0.73 (OL1), 0.42 (OL2), 0.16 (OL3) and 0.1 (OR2). Seven different lengths of OR-containing DNA fragments were prepared. Measurement of kinetic parameters shows that the affinity of Cro to operator DNA (measured by KD) is essentially constant and independent of the DNA length, while the association and dissociation rate constants increase as the DNA length increases. This is consistent with the idea that Cro locates and leaves its operator via a two-step mechanism. It appears that Cro binds first at an arbitrary site on DNA, then is transferred to its operator site by a facilitated mechanism. The process is reversed when Cro dissociates from the operator. Most of our data fit to the theoretical expression formulated by Berg, Winter & von Hippel for the sliding mechanism. We conclude that Cro slides along the DNA to locate and leave the operator.  相似文献   

12.
How lambda repressor and lambda Cro distinguish between OR1 and OR3   总被引:14,自引:0,他引:14  
A Hochschild  J Douhan  M Ptashne 《Cell》1986,47(5):807-816
Although lambda repressor and lambda Cro bind to the same six operators on the phage chromosome, the fine specificities of the two proteins differ: repressor binds more tightly to OR1 than to OR3, and vice versa for Cro. In this paper, we change base pairs in the operators and amino acids in the proteins to analyze the basis for these preferences. We find that these preferences are determined by residues 5 and 6 of the recognition helices of the two proteins and by the amino-terminal arm, in the case of repressor. We also find that the most important base pairs in the operator which enable repressor and Cro to discriminate between OR1 and OR3 are position 3 (for Cro) and positions 5 and 8 (for repressor). These and previous results show how repressor and Cro recognize and distinguish between two related operator sequences.  相似文献   

13.
A series of mutations comprising single and multiple substitutions, deletions, and extensions within the carboxy-terminal domain of the bacteriophage lambda Cro repressor have been constructed. These mutations generally affect the affinity of repressor for specific and nonspecific DNA. Additionally, substitution of the carboxy-terminal alanine with several amino acids capable of hydrogen-bonding interactions leads to improved specific binding affinities. A mutation is also described whereby cysteine links the two Cro monomers by a disulfide bond. As a consequence, a significant improvement in nonspecific binding and a concomitant reduction in specific binding are observed with this mutant. These results provide evidence that the carboxy terminus of Cro repressor is an important DNA binding domain and that a flexible connection between the two repressor monomers is a critical factor in modulating the affinity of wild-type repressor for DNA.  相似文献   

14.
15.
The repressor protein of bacteriophage 434 binds to DNA as a dimer of identical subunits. Its strong dimerization is mediated by the carboxyl-terminal domain. Cooperative interactions between the C-terminal domains of two repressor dimers bound at adjacent sites can stabilize protein-DNA complexes formed with low-affinity binding sites. We have constructed a plasmid, pCT1, which directs the overproduction of the carboxyl-terminal domain of 434 repressor. The protein encoded by this plasmid is called CT-1. Cells transformed with pCT1 are unable to be lysogenized by wild-type 434 phage, whereas control cells are lysogenized at an efficiency of 1 to 5%. The CT-1-mediated interference with lysogen formation presumably results from formation of heteromeric complexes between the phage-encoded repressor and the plasmid-encoded carboxyl-terminal domain fragment. These heteromers are unable to bind DNA and thereby inhibit the repressor's activity in promoting lysogen formation. Two lines of evidence support this conclusion. First, DNase I footprinting experiments show that at a 2:1 ratio of CT-1 to intact 434 repressor, purified CT-1 protein prevents the formation of complexes between 434 repressor and its OR1 binding site. Second, cross-linking experiments reveal that only a specific heterodimeric complex forms between CT-1 and intact 434 repressor. This latter observation indicates that CT-1 interferes with 434 repressor-operator complex formation by preventing dimerization and not by altering the conformation of the DNA-bound repressor dimer. Our other evidence is also consistent with this suggestion. We have used deletion analysis in an attempt to define the region which mediates the 434 repressor-CT-1 interaction. CT-1 proteins which have more than the last 14 amino acids removed are unable to interfere with 434 repressor action in vivo.  相似文献   

16.
The short 8–10 amino acid “hinge” sequence in lactose repressor (LacI), present in other LacI/GalR family members, links DNA and inducer‐binding domains. Structural studies of full‐length or truncated LacI‐operator DNA complexes demonstrate insertion of the dimeric helical “hinge” structure at the center of the operator sequence. This association bends the DNA ~40° and aligns flanking semi‐symmetric DNA sites for optimal contact by the N‐terminal helix‐turn‐helix (HtH) sequences within each dimer. In contrast, the hinge region remains unfolded when bound to nonspecific DNA sequences. To determine ability of the hinge helix alone to mediate DNA binding, we examined (i) binding of LacI variants with deletion of residues 1–50 to remove the HtH DNA binding domain or residues 1–58 to remove both HtH and hinge domains and (ii) binding of a synthetic peptide corresponding to the hinge sequence with a Val52Cys substitution that allows reversible dimer formation via a disulfide linkage. Binding affinity for DNA is orders of magnitude lower in the absence of the helix‐turn‐helix domain with its highly positive charge. LacI missing residues 1–50 binds to DNA with ~4‐fold greater affinity for operator than for nonspecific sequences with minimal impact of inducer presence; in contrast, LacI missing residues 1–58 exhibits no detectable affinity for DNA. In oxidized form, the dimeric hinge peptide alone binds to O1 and nonspecific DNA with similarly small difference in affinity; reduction to monomer diminished binding to both O1 and nonspecific targets. These results comport with recent reports regarding LacI hinge interaction with DNA sequences.  相似文献   

17.
Knowledge of the three-dimensional structure of the bacteriophage λ Cro repressor, combined with an analysis of amino acid sequences and DNA coding sequences for this and other proteins that recognize and bind specific base sequences of double-helical DNA, suggests that a portion of the structure of the Cro repressor that is involved in DNA binding also occurs in the Cro protein from bacteriophage 434, the cII protein from bacteriophage λ, the Salmonella phage P22 c2 repressor and the cI repressor from bacteriophage λ. This α-helical super-secondary structure may be a common structural motif in proteins that bind double-helical DNA in a base sequence-specific manner.  相似文献   

18.
19.
The mode of interaction of Cro repressor with specific and nonspecific sites on DNA was explored by chemical modification and protection of lysine and tyrosine residues. Cro has 8 lysines. In the presence of DNA, lysines 32 and 56 are fully protected and lysines 21, 62, and 63 are partially protected from alkylation. However, the terminal amino group and lysines 8, 18, and 39 are not protected. Location of the protected and unprotected lysines on the three-dimensional Cro structure defines a DNA-binding region. The results provide direct experimental support for a mode of interaction between Cro and DNA, in which Cro buries its 2-fold related alpha-helices in consecutive DNA major grooves (Anderson, W. F., Ohlendorf, D. H., Takeda, Y., and Matthews, B. W. (1981) Nature 290, 754-758; Ohlendorf, D. H., Anderson, W. F., Fisher, R. G., Takeda, Y., and Matthews, B. W. (1982) Nature 298, 718-723). In the model, the carboxyl-terminal part of Cro was tentatively presumed to interact with the DNA minor groove. Protection of lysines 62 and 63 confirms the involvement of the carboxyl terminus in DNA binding. Although nonspecific and specific DNA protect the same lysine residues, there are differences in the nature of the interaction of Cro with nonspecific and specific DNA. Cro-nonspecific DNA interaction is salt-sensitive, suggesting that the interaction is predominantly electrostatic. On the other hand, Cro-specific DNA interaction is salt-resistant, suggesting that the interaction may include nonelectrostatic components (hydrogen bonds and hydrophobic interactions) as well. Protection experiments of tyrosine residues (against iodination) suggest that the conformation of Cro repressor changes in two stages: first, when Cro binds at nonspecific sites, and, second, when Cro binds to specific sites on DNA.  相似文献   

20.
The extent of DNA bending induced by 434 repressor, its amino terminal DNA binding domain (R1-69), and 434 Cro was studied by gel shift assay. The results show that 434 repressor and R1-69 bend DNA to the same extent. 434 Cro-induced DNA bends are similar to those seen with the 434 repressor proteins. On approximately 265 base pair fragments, the cyclic AMP receptor protein of Escherichia coli (CRP) produces larger mobility shifts than does 434 repressor. This indicates that the 434 proteins bend DNA to a much smaller extent than does CRP. The effects of central operator sequence on intrinsic and 434 protein-induced DNA bending was also examined by gel shift assay. Two 434 operators having different central sequences and affinities for 434 proteins display no static bending. The amount of gel shift induced by 434 repressor on these operators is identical, showing that the 434 repressor bends operators with different central sequences to the same extent. Hence, mutations in the central region of the operator do not influence the bent structure of the unbound or bound operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号