首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a rapid purification procedure for 3-hydroxy-3-methylglutaryl coenzyme A reductase, the major regulatory enzyme in hepatic cholesterol biosynthesis. A freeze-thaw technique is used for solubilizing the enzyme from rat liver microsomal membranes. No detergents or other stringent conditions are required. The purification procedure employs Blue Dextran-Sepharose-4B affinity chromatography, and purification can be carried out from microsomal membranes to purified enzyme in 8 to 10 hours. The purified enzyme has a specific activity of 517 nmoles/min/mg protein, and it is 975-fold purified with respect to the original microsomal membrane suspension. SDS polyacrylamide gel electrophoresis of the purified enzyme shows only trace impurities; the subunit molecular weight for the enzyme measured by this technique is 47,000.  相似文献   

2.
A procedure for the purification of 3-hydroxy-3-methylglutaryl coenzyme A reductase [mevalonate:NADP+ oxidoreductase (CoA-acylating); EC 1.1.1.34] from rat liver microsomes has been developed. The enzyme preparations obtained by this procedure have specific activities of 16 to 23 μmol of mevalonate formed per minute per milligram of protein. These enzyme preparations were judged to be homogeneous on the basis of comigration of enzyme activity and protein on polyacrylamide gels.  相似文献   

3.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

4.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase has been purified to apparent homogeneity by a process involving the following steps: solubilization from microsomes and chromatography on Affi-Gel Blue, phosphocellulose, Bio-Gel A 1.5m, and agarose-hexane-ATP. The apparent Mr of the purified enzyme as judged by gel-filtration chromatography is 205,000 and by sodium dodecyl sulfate-gel electrophoresis is 105,000. Immunoprecipitation of homogeneous reductase phosphorylated by reductase kinase and [γ-32P]ATP produces a unique band containing 32P bound to protein which migrates at the same Rf as the reductase subunit. Incubation of 32P-labeled HMG-CoA reductase with reductase phosphatase results in a time-dependent loss of protein-bound 32P radioactivity, as well as an increase in enzymic activity. Reductase kinase, when incubated with ATP, undergoes autophosphorylation, and a simultaneous increase in its enzymatic activity is observed. Tryptic treatment of immunoprecipitated, 32P-labeled HMG-CoA reductase phosphorylated with reductase kinase produces only one 32P-labeled phosphopeptide with the same Rf as one of the two tryptic phosphopeptides that have been reported in a previous paper. The possible existence of a second microsomal reductase kinase is discussed.  相似文献   

5.
Molecular and Cellular Biochemistry - Within the last few years considerable evidence has accumulated which indicates that changes in HMG-CoA reductase are due primarily, if not solely, to changes...  相似文献   

6.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol biosynthesis. Because proper CNS development depends on de novo cholesterol biosynthesis, peroxisomes must play a critical functional role in this process. Surprisingly, no information is available on the peroxisomal isoprenoid/cholesterol biosynthesis pathway in normal brain tissue or on the compartmentalization of isoprene metabolism in the CNS. This has been due mainly to the lack of a well-defined isolation procedure for brain tissue, and also to the presence of myelin in brain tissue, which results in significant contamination of subcellular fractions. As a first step in characterizing the peroxisomal isoprenoid pathway in the CNS, we have established a purification procedure to isolate peroxisomes and other cellular organelles from the brain stem, cerebellum and spinal cord of the mouse brain. We demonstrate by use of marker enzymes and immunoblotting with antibodies against organelle specific proteins that the isolated peroxisomes are highly purified and well separated from the ER and mitochondria, and are free of myelin contamination. The isolated peroxisomal fraction was purified at least 40-fold over the original homogenate. In addition, we show by analytical subcellular fractionation and immunoelectron microscopy that HMG-CoA reductase protein and activity are localized both in the ER and peroxisomes in the CNS.  相似文献   

7.
Improved assay of 3-hydroxy-3-methylglutaryl coenzyme A reductase   总被引:10,自引:0,他引:10  
Two improvements are described for the assay of HMG CoA reductase. These are a simple synthesis of the substrate precursor HMG-3-(14)C anhydride and a double-label ((14)C and (3)H) method for determining the amount of mevalonate-3-(14)C that is formed from the substrate.  相似文献   

8.
Incubation of four purified rat liver 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase phosphatases (G. Gil, M. Sitges, and F. G. Hegardt, (1981) Biochim. Biophys. Acta663, 211–221) with HMG-CoA, CoA, NADPH, or citrate caused a concentration-dependent inactivation of the enzyme activities. HMG-CoA and CoA showed similar patterns of inactivation and at 0.5 mm of both compounds, the four reductase phosphatases were fully inhibited. Half-maximal inactivation was comprised between 0.02 and 0.1 mm of HMG-CoA and CoA. NADPH at concentration ranging between 5 and 10 mm produced complete inactivation of reductase phosphatases. Citrate at 5 mm produced full inactivation, and half-maximal inhibition ranged from 0.1 to 0.4 mm for the different phosphatases. The behavior of fluoride varied with respect to the four phosphatases: Low molecular forms were inactivated in a similar manner as described for other protein phosphatases. However, high molecular forms were slightly inactivated, and phosphatase IIa at 100 mm showed a level of activity similar to the control. The effect of KCl on the four reductase phosphatases could explain this behavior since at high concentrations, KCl (and NaCl) produced activation in both high and low molecular forms, this effect being more enhanced in high Mr reductase phosphatases. The insensitivity to fluoride of high Mr reductase phosphatases could explain the discrepancies in percentage of the active form of HMG-CoA reductase described previously in literature.  相似文献   

9.
Pseudomonas sp. M grown on mevalonate as the sole source of carbon has 200- to 800-fold induced levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The enzyme, which was purified to a homogeneous state in 54% yield (final specific activity, 60.5 mumol of NAD+ reduced per min per mg of protein), converted R-mevalonate (Km = 0.15 mM) to S-HMG-CoA. Activity was sensitive to sulfhydryl modifying reagents. The apparent molecular weight of the holoenzyme was 178,000 and that of the subunit 43,000. The enzyme thus appears to be a tetramer. Comparison of a 23-residue amino-terminal sequence with the cDNA-derived sequence of Chinese hamster ovary cell HMG-CoA reductase showed little homology and antibody raised against the Pseudomonas enzyme did not appear to cross-react with rat liver HMG-CoA reductase. Addition of mevalonate to cells growing on glucose was followed by a rapid and biphasic induction of HMG-CoA reductase activity. During phase I, mevalonate or its catabolites may accumulate in intact cells of Pseudomonas sp. M and acetoacetate, a competitive inhibitor of HMG-CoA reductase (Ki = 3.2 mM), may feedback inhibit the enzyme under these conditions.  相似文献   

10.
Isoflavones identified as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in soybean paste were assayed using the catalytic portion of Syrian hamster HMG-CoA reductase, and the kinetic values were measured using HMG-CoA and NADPH. The inhibition of HMG-CoA reductase by these inhibitors was competitive with HMG-CoA and noncompetitive with NADPH. Ki values for genistein, daidzein, and glycitein were 27.7, 49.5, and 94.7 microM, respectively.  相似文献   

11.
M H Moghadasian 《Life sciences》1999,65(13):1329-1337
In this article, de novo cholesterol synthesis, its inhibition by HMG-CoA reductase inhibitors (statins) and clinical pharmacology aspects of the statins have been reviewed. Statins are available in both active and pro-drug forms. Their affinity to bind and subsequently to inhibit HMG-CoA reductase activity is approximately 3 orders of magnitude higher than that of natural substrate (HMG-CoA). All members of this group of lipid-lowering agents are, to a varying degree, absorbed from the gut. However, their bioavailability depends on their lipophobicity and their concomitant use with meals. The interaction between HMG-CoA reductase inhibitors and other lipid-lowering agents has been reviewed in more detail. One major side-effect of lipid-lowering combination therapy is myopathy with or without rhabdomyolysis. Combination of statins with gemfibrozil seems to increase risk of this adverse event, particularly in patients with renal impairment, more than combination with other lipid-lowering agents. Combination therapy with other agents including anticoagulants, antihypertensive, anti-inflammatory, oral hypoglycemic and antifungal agents as well as beta-blockers, H2 blockers, cyclosporine and digoxin has been also reviewed. The pleiotropic non-lipid lowering properties of statins and their effects on the quality of lipoprotein particles, the activities of cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase as well as their possible synergistic effects with n-3 fatty acids, phytosterols, vitamin E and aspirin in reducing cardiovascular events warrant further investigation.  相似文献   

12.
13.
A simple, efficient, freeze-thaw procedure for the solubilization of liver 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase has been developed. Microsomes of chicken or rat liver were prepared by homogenization in buffer containing 100 mm sucrose, 50 mm KCl, 40 mm KH2PO4, 30 mm EDTA, and 2 mm DTT, pH 7.2 (buffer A). The homogenate was centrifuged at 12,000g (15 min), and the microsomes were separated from the supernatant by centrifugation at 100,000g (60 min). The isolated microsomes were frozen, either by dry ice-acetone or by storage in a freezer at ?20°C. The frozen microsomes were permitted to thaw at room temperature, homogenized in buffer A, and centrifuged at 100,000g (60 min). The extraction was repeated and the combined supernatants contained 70 to 90% of the microsomal HMG-CoA reductase activity. The yield of enzyme activity by the freeze-thaw technique is equal to or greater than previously reported methodologies and is significantly easier to perform. This procedure is particularly suited to the preparation of large quantities of solubilized enzyme for isolation and characterization of HMG-CoA reductase. In addition, this method does not require the use of detergents, sonification, or other procedures which might partially inactivate or alter the molecular properties of the enzyme.  相似文献   

14.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) has been isolated from human liver utilizing HMG-CoA affinity chromatography. The apparent monomer molecular weight of purified human HMG-CoA reductase by SDS-gel electrophoresis was 53,000, and the oligomeric molecular weight determined by sucrose density centrifugation was 104,000. A monospecific antibody prepared against rat liver HMG-CoA reductase inhibited the enzymic activity of microsomal and purified human liver enzyme and formed a single immunoprecipitin line by radial immunodiffusion. These results represent the initial isolation and characterization of human liver HMG-CoA reductase.  相似文献   

15.
16.
17.
This paper describes an effective method for the solubilization of microsomal HMG-CoA reductase from rat liver. Exposing the microsomes to a freeze-thaw treatment solubilized 80% of the microsomal reductase activity. Subsequently, a 25-fold purification has led to an enzyme preparation with a specific activity of 10–14 nmoles MVA per min per mg of protein and an increased stability.  相似文献   

18.
Cultured C-6 glial cells were utilized to evaluate the effect of antimicrotubular drugs on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and cholesterol synthesis. Colchicine, Colcemid, and vinblastine (1.0 muM) caused a marked reduction in HMG-CoA reductase activity and, as a consequence, the rate of cholesterol synthesis in these cells. No effect was observed with lumicolchicine, a mixture of colchicine isomers with no effect on microtubules. The effect of colchicine was apparent within 1 h after addition to the culture medium, and, after 6 h, HMG-CoA reductase activity in treated cells was only approximately 15 to 30% of that in untreated cells. Reductase activity was very sensitive to the concentration of drug added, i.e. cells treated with just 0.1 muM colchicine for 6 h exhibited a 50% lower enzymatic activity than did untreated cells. The lack of a generalized, nonspecific toxic effect on the cells was indicated by the finding of no change in the activities of fatty acid synthetase and NADPH-cytochrome c reductase and the rate of total protein synthesis in cells treated with colchicine (1 muM) for 6 h. A close temporal and quantitative correlation was observed between the effects of colchicine on HMG-CoA reductase and on a parameter of microtubular function, i.e. maintenance of glial cell shape. The data suggest that microtubules are involved in the regulation of HMG-CoA reductase and cholesterol synthesis in C-6 glial cells.  相似文献   

19.
20.
The effects on cholesterol biosynthesis of growth of cultured C-6 glial cells in serumfree medium ± supplementation with linoleic or linolenic acid were studied. Markedly higher activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) were observed in cells grown in linoleate- or linolenate-supplemented versus nonsupplemented medium. After 48 h HMG-CoA reductase activities were two-and four-fold higher in cells supplemented with 20 and 100 μm linoleate, respectively. The increase in activity became apparent after 24 h and was marked after 48 h. Rates of incorporation of [14C]acetate or 3H2O into sterols did not reflect the changes in reductase activity. Thus, in cells supplemented with 50 μm linoleate for 24 and 48 h rates of incorporation of [14C]acetate were 75–80% lower than rates in nonsupplemented cells. This difference resulted because over the first 24 h of the experiment a fivefold increase in the rate of sterol synthesis occurred in the nonsupplemented cells, whereas essentially no change occurred in the linoleate-supplemented cells; little further change occurred between 24 and 48 h in the nonsupplemented and the linoleate-supplemented cells. That the difference in sterol synthesis under these experimental conditions could be mediated at the level of HMG-CoA synthase (EC 4.1.3.5) was suggested by two series of findings, i.e., first, similar quantitative and temporal changes in the activity of this enzyme, and, second, no change in the activity of acetoacetyl-CoA thiolase (EC 2.3.1.9) or the incorporation of [14C]mevalonate into sterols. Thus, the data suggest that HMG-CoA synthase, and not HMG-CoA reductase, may direct the rate of cholesterol biosynthesis under these conditions of serum-free growth ± supplementation with polyunsaturated fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号