首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermophilic anaerobic digestion (TAD) of sewage sludge has often been found to be less stable than mesophilic treatment. In comparison to mesophilic digesters, thermophilic reactors treating sludge are generally characterized by relatively high concentrations of volatile fatty acids (VFA) in the effluent along with poor effluent quality, indicating a lower level of process stability. However, reviewing the literature related to the procedure for obtaining a thermophilic inoculum, it seems that most of the problems associated with the instability and the accumulation of organic intermediates are the result of the manner in which the thermophilic sludge has been obtained. In this paper, the different options available for obtaining an anaerobic digester operating at thermophilic temperature (55°C) have been reviewed. In this light, rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤500?mg acetic acid L?1 before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.  相似文献   

2.
Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4 +) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. JIMB-2008: BioEnergy—Special issue.  相似文献   

3.
Anaerobic digestion and wastewater treatment systems   总被引:19,自引:0,他引:19  
Upflow Anaerobic Sludge Bed (UASB) wastewater (pre-)treatment systems represent a proven sustainable technology for a wide range of very different industrial effluents, including those containing toxic/inhibitory compounds. The process is also feasible for treatment of domestic wastewater with temperatures as low as 14–16° C and likely even lower. Compared to conventional aerobic treatment systems the anaerobic treatment process merely offers advantages. This especially is true for the rate of start-up. The available insight in anaerobic sludge immobilization (i.e. granulation) and growth of granular anaerobic sludge in many respects suffices for practice. In anaerobic treatment the immobilization of balanced microbial communities is essential, because the concentration of intermediates then can be kept sufficiently low.So far ignored factors like the death and decay rate of organisms are of eminent importance for the quality of immobilized anaerobic sludge. Taking these factors into account, it can be shown that there does not exist any need for phase separation when treating non- or slightly acidified wastewaters. Phase separation even is detrimental in case the acidogenic organisms are not removed from the effluent of the acidogenic reactor, because they deteriorate the settleability of granular sludge and also negatively affect the formation and growth of granular sludge. The growing insight in the role of factors like nutrients and trace elements, the effect of metabolic intermediates and end products opens excellent prospects for process control, e.g. for the anaerobic treatment of wastewaters containing mainly methanol.Anaerobic wastewater treatment can also profitably be applied in the thermophilic and psychrophilic temperature range. Moreover, thermophilic anaerobic sludge can be used under mesophilic conditions.The Expanded Granular Sludge Bed (EGSB) system particularly offers big practical potentials, e.g. for very low strength wastewaters (COD 1 g/l) and at temperatures as low as 10° C. In EGSB-systems virtually all the retained sludge is employed, while compared to UASB-systems also a substantially bigger fraction of the immobilized organisms (inside the granules) participates in the process, because an extraordinary high substrate affinity prevails in these systems. It looks necessary to reconsider theories for mass transfer in immobilized anaerobic biomass.Instead of phasing the digestion process, staging of the anaerobic reactors should be applied. In this way mixing up of the sludge can be significantly reduced and a plug flow is promoted. A staged process will provide a higher treatment efficiency and a higher process stability. This especially applies for thermophilic systems.  相似文献   

4.
The use of anaerobic processes to treat low-strength wastewater has been increasing in recent years due to their favourable performance-costs balance. For optimal results, it is necessary to identify reactor configurations that are best suited for this kind of application. This paper reports on the comparative study carried out with two high-rate anaerobic reactor systems with the objective of evaluating their performances when used for the treatment of low-strength, complex wastewater. One of the systems is the commonly used up-flow anaerobic sludge blanket (UASB) reactor. The other is the up-flow staged sludge bed (USSB) system in which the reactor was divided longitudinally into 3, 5 and 7 compartments by the use of baffles. The reactors (9 l) were fed with a synthetic, soluble and colloidal waste (chemical oxygen demand (COD) < 1000 mg/l) and operated at 28°C and 24 h hydraulic retention time. Intermediate flow hydraulics, between plug-flow and completely-mixed, in the UASB and 7 stages USSB reactors allowed efficient degradation of substrates with minimum effluent concentrations. Low number of compartments in the USSB reactors increased the levels of short-circuiting thus reducing substrate removal efficiencies. All reactors showed high COD removal efficiencies (93–98%) and thus can be regarded as suitable for the treatment of low strength, complex wastewater. Staged anaerobic reactors can be a good alternative for this kind of application provided they are fitted with a large enough (≥7) number of compartments to fully take advantage of their strengths. Scale factors seem to have influenced importantly on the comparison between one and multi staged sludge-bed reactors and, therefore, observations made here could change at larger reactor volumes.  相似文献   

5.
Thermophilic anaerobic treatment of sulphur-rich paper mill wastewater (0.8-3.1 gCOD/l, 340–850 mgSO4/l; COD:SO4 3.4-5.3) was studied in three laboratory-scale, upflow anaerobic sludge blanket (UASB) reactors and in bioassays. The reactors were inoculated with non-adapted thermophilic granular sludge. In the bioassays, no inhibition of the inoculum was detected and about 62% COD removal (sulphide stripped) was obtained. About 70 to 80% of the removed COD was methanised. In the reactors, up to 60–74% COD removal (effluent sulphide stripped) was obtained at loading rates up to 10–30 kgCOD/m3d and hydraulic retention times down to 6 to 2 hours. The effluent total sulphide was up to 150–250 mg/l. Sulphide inhibition could not be confirmed from the reactor performances. The results from bioassays suggested that both the inoculum and sludge from the UASB reactor used acetate mainly for methane production, while sulphide was produced from hydrogen or its precursors.  相似文献   

6.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

7.
Two continuous stirred tanks reactors (CSTR) and four anaerobic fluidized bed reactors (AFBR) were used to study the treatment of a synthetic meat waste during single-and two-stage anaerobic treatment. Four configurations were investigated; a single-stage CSTR and AFBR and the two-stage systems CSTR-AFBR and AFBR-AFBR. Startup of the anaerobic reactors was achieved within 50 days by use of a regime that included stepped increases in influent COD, methanol substitution of the substrate, and addition of essential trace metals such as cobalt and nickel. Two-stage reactors removed up to 85% of influent COD concentrations of 5000 mg/L, whereas the single-stage AFBR and CSTR removed 76 and 9%, respectively. The proportion of methane in the effluent gases increased as the influent COD concentration was increased. Volumetric production of methane was greatest for the first stage of the AFBR-AFBR system. Solids retention times calculated for the AFBRs ranged from 7 to 12 days, sufficient to support methanogenesis. The AFBRs and two-stage systems were more resistant to an influent pH shock from the operating value of pH 6.8 down to pH 3 than the CSTRs and single-stage reactors. It was concluded that high-rate anaerobic treatment systems were applicable to meat industry wastewaters and that two-stage digestion produced a better quality effluent.  相似文献   

8.
Anaerobic digestion modelling is an established method for assessing anaerobic wastewater treatment for design, systems analysis, operational analysis, and control. Anaerobic treatment of domestic wastewater is a relatively new, but rapidly maturing technology, especially in developing countries, where the combination of low cost, and moderate-good performance are particularly attractive. The key emerging technology is high-rate anaerobic treatment, particularly UASB reactors. Systems modelling can potentially offer a number of advantages to this field, and the key motivations for modelling have been identified as operational analysis, technology development, and model-based design. Design is particularly important, as it determines capital cost, a key motivation for implementers. Published modelling studies for anaerobic domestic sewage treatment are limited in number, but well directed at specific issues. Most have a low structural complexity, with first order kinetics, as compared to the more commonly used Monod kinetics. This review addresses the use of anaerobic models in general, application of models to domestic sewage systems, and evaluates future requirements for models that need to address the key motivations of operational analysis, technology development, and model-based design. For operational analysis and technology development, a complex model such as the ADM1 is recommended, with further extensions as required to address factors such as sulphate reduction. For design, the critical issSues are hydraulics and particles (i.e., biomass and solid substrate) modelling. Therefore, the kinetic structure should be relatively simple (at least two-step), but the hydraulic and particulate model should be relatively complex.  相似文献   

9.
A sequencing batch reactor (SBR) system is demonstrated to biologically remove nitrogen, phosphorus and chemical oxygen demand (COD) to very low levels from abattoir wastewater. Each 6 h cycle contained three anoxic/anaerobic and aerobic sub-cycles with wastewater fed at the beginning of each anoxic/anaerobic period. The step-feed strategy was applied to avoid high-level build-up of nitrate or nitrite during nitrification, and therefore to facilitate the creation of anaerobic conditions required for biological phosphorus removal. A high degree removal of total phosphorus (>98%), total nitrogen (>97%) and total COD (>95%) was consistently and reliably achieved after a 3-month start-up period. The concentrations of total phosphate and inorganic nitrogen in the effluent were consistently lower than 0.2 mg P l−1 and 8 mg N l−1, respectively. Fluorescence in situ hybridization revealed that the sludge was enriched in Accumulibacter spp. (20–40%), a known polyphosphate accumulating organism, whereas the known glycogen accumulating organisms were almost absent. The SBR received two streams of abattoir wastewater, namely the effluent from a full-scale anaerobic pond (75%) and the effluent from a lab-scale high-rate pre-fermentor (25%), both receiving raw abattoir wastewater as feed. The pond effluent contained approximately 250 mg N l−1 total nitrogen and 40 mg P l−1 of total phosphorus, but relatively low levels of soluble COD (around 500 mg l−1). The high-rate lab-scale pre-fermentor, operated at 37°C and with a sludge retention time of 1 day, proved to be a cheap and effective method for providing supplementary volatile fatty acids allowing for high-degree of biological nutrient removal from abattoir wastewater.  相似文献   

10.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

11.
Kraft mill is responsible for massive discharge of highly polluted effluents. The main characteristics of this effluent are high toxicity and low biodegradability due to tannin, lignin and chlorophenol compounds. The composition may vary dramatically depending, for instance, on the utilised feedstock and process. The purpose of this work was to investigate the molecular weight distribution of Pinus radiata kraft pulping wastewater treated by anaerobic digestion by using two types of anaerobic reactors: fixed bed and sludge blanket. Anaerobic sludge blanket (UASB) and anaerobic filter (AF) were operated. In both reactors, the total alkalinity ranged between 1.0 and 1.5 g CaCO3/l, while the organic load rate (OLR) was increasing during operation from 1.2 to 3.3 gCOD/l d. COD and total phenolic compounds (UV215) removal ranged between 30-50% and 13-20%, respectively, while the BOD5 removal ranged 60-90%. However only a partial biodegradation (10-43%) of tannin and lignin was observed. Results from ultrafiltration analyses indicated that the fraction with a molecular weight (MW) < 1000, COD and colour decreased after anaerobic treatment, but the total phenolic compounds increased. In the 1000 < MW < 10,000 fraction, there was no change in COD, UV215 and colour. In the > 10,000 MW fraction, colour and COD fraction increased by 14% and 5%, respectively, after anaerobic treatment. It can be concluded from this study, that treatment with UASB or AF reactors is not enough, under the conditions tested, for a large COD removal from Pinus radiata wastewater.  相似文献   

12.
The anaerobic degradation of terephthalate as sole substrate was studied in three anaerobic upflow reactors. Initially, the reactors were operated as upflow anaerobic sludge bed (UASB) reactors and seeded with suspended methanogenic biomass obtained from a full-scale down-flow fixed film reactor, treating wastewater generated during production of purified terephthalic acid. The reactors were operated at 30, 37, and 55 degrees C. The terephthalate removal capacities remained low in all three reactors (<4 mmolxL-1xday-1, or 1 g of chemical oxygen demand (COD)xL-1xday-1) due to limitations in biomass retention. Batch experiments with biomass from the UASB reactors revealed that, within the mesophilic temperature range, optimal terephthalate degradation is obtained at 37 degrees C. No thermophilic terephthalate-degrading culture could be obtained in either continuous or batch cultures. To enhance biomass retention, the reactors were modified to anaerobic hybrid reactors by introduction of two types of reticulated polyurethane (PUR) foam particles. The hybrid reactors were operated at 37 degrees C and seeded with a mixture of biomass from the UASB reactors operated at 30 and 37 degrees C. After a lag period of approximately 80 days, the terephthalate conversion capacity of the hybrid reactors increased exponentially at a specific rate of approximately 0.06 day-1, and high removal rates were obtained (40-70 mmolxL-1xday-1, or 10-17 g of CODxL-1xday-1) at hydraulic retention times between 5 and 8 h. These high removal capacities could be attributed to enhanced biomass retention by the development of biofilms on the PUR carrier material as well as the formation of granular biomass. Biomass balances over the hybrid reactors suggested that either bacterial decay or selective wash-out of the terephthalate fermenting biomass played an important role in the capacity limitations of the systems. The presented results suggest that terephthalate can be degraded at high volumetric rates if sufficiently long sludge ages can be maintained, and the reactor pH and temperature are close to their optima.  相似文献   

13.
Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed.  相似文献   

14.
Four fluidized bed reactors were used to evaluate single-and separated-phase anaerobic treatments of a high strength wastewater. Two reactors were fed with a synthetic wastewater, containing glucose as the primary carbon source, with a COD of 1.2 x 10(4) mg/L while the remaining pair were fed with a wastewater with a COD of 6000 mg/L. AT each influent strength, one fluidized bed reactor was operated as a single-phase system while the other was operated as a methanogenic reactor which was preceded by an acidification reactor in a separatedphase system. The reactors were operated under steady-state and variable process conditions. The separated-phase system consistently gave a better quality effluent with lower effluent suspended solids and total COD, and the methane yield was also improved. Under variable process conditions, the separated-phase system was inherently more stable and recovered more rapidly following a shock loading. Propionate and acetate degradation studies indicated that the biomass in the methanogenic fluidized beds of the two-phase systems was more adapted to volatile acid degradation than the biomass in the single-phase fluidized beds.  相似文献   

15.
Thermophilic aerobic wastewater treatment is reviewed. Thermophilic processes have been studied in laboratory and pilot-scale while full-scale applications are rare. The paper focuses on the microbiology of aerobic thermophiles, performance of the aerobic wastewater treatments, sludge yield, and alternatives to enhance performance of thethermophilic process. Thermophilic processes have been shown to operate under markedly high loading rates (30–180 kg COD m−3d−1).Reported sludge production values under thermophilic conditions vary between 0.05 and0.3 kg SS kg CODremoved, which are about the same or lower than generally obtained in mesophilic processes. Compared to analogous mesophilic treatment, thermophilic treatment commonly suffers from poorer effluent quality, measured by lower total COD and filtrated (GF-A) COD removals. However, in the removal of soluble (bacterial membrane filtered) COD both mesophilic and thermophilic treatments have produced similar results. Sludge settle ability in thermophilic processes have been reported to be better or poorer than in analogous mesophilic processes, although cases with better settling properties are rare. Combining thermophilic with mesophilic treatment or ultrafiltration may in some cases markedly improve effluent quality. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
《Biological Wastes》1987,19(4):257-266
Three different suspended-growth anaerobic digestion configurations—the mesophilic one-stage, the mesophilic two-phase and the thermophilic one-stage, were used to treat palm oil mill effluent (POME) and their performances compared. The mesophilic two-phase process showed the highest energy yields which reached 20 542 J g−1 COD utilized at a hydraulic retention time of 31 days. However, high energy yields did not coincide with high TCOD removals. The latter was a characteristic of the thermophilic process. The relatively poor TCOD removal in the two-phase system was due to its lower efficiency in VSS removal. At hydraulic retention times of 25 days and more the mesophilic one-stage process had higher energy yields than the thermophilic process. Anaerobic digestion was found to be an effective means for POME treatment.  相似文献   

17.
The prospective of table olive debittering & washing Effluent (DWE) as feed stock wastewater for anaerobic digestion (AD) systems was investigated in batch and continuous systems together with cattle and pig manures. While DWE considered unsuitable for biological treatment methods due to its unbalanced nature, the co-digestion of the wastewaters resulted in a 50% increase in the methane production/gram volatile solidsadded (CH4/gVSadded), accompanied by 30% phenol reduction and 80% total organic carbon removal (TOC). pH increase during the co-digestion period was not identified as an inhibitory factor and all reactors were able to withstand this operational condition change. Moreover, no volatile fatty acid (VFA) accumulation was observed, indicating that the reactors were not operating under stress-overloading state. Under thermophilic conditions a 7% increase on the TOC removal efficiency was achieved when compared to the mesophilic systems while, under mesophilic conditions phenolic compounds reduction was 10% higher compared to the thermophilic systems.  相似文献   

18.
The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 ± 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover–Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U max) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K B) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.  相似文献   

19.
With the aim of improving knowledge about the stability and reliability of anaerobic wastewater treatment systems, several researchers have studied the effects of operational or environmental variations on the performance of such reactors. In general, anaerobic reactors are affected by changes in external factors, but the severity of the effect is dependent upon the type, magnitude, duration and frequency of the imposed changes. The typical responses include a decrease in performance, accumulation of volatile fatty acids, drop in pH and alkalinity, change in biogas production and composition, and sludge washout. This review summarises the causes, types and effects of operational and environmental variation on anaerobic wastewater treatment systems. However, there still remain some unclear technical and scientific aspects that are necessary for the improvement of the stability and reliability of anaerobic processes.  相似文献   

20.
Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic–acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50–65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号