首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three group I mGluR antagonists CPCCOEt, LY367385 and BAY36-7620, were analyzed for their effect on cell surface expression of metabotropic glutamate receptor 1a and 1b. All three antagonists inhibited glutamate-induced internalization of mGluR1a and mGluR1b. However, when added alone, either LY367385 or BAY36-7620 increased the cell surface expression of mGluR1a but not mGluR1b. Both LY367385 and BAY36-7620 displayed inverse agonist activity as judged by their ability to inhibit basal inositol phosphate accumulation in cells expressing the constitutively active mGluR1a. Interestingly, mGluR1a but not mGluR1b was constitutively internalized in HEK293 cells and both LY367385 and BAY36-7620 inhibited the constitutive internalization of this splice variant. Furthermore, coexpression of dominant negative mutant constructs of arrestin-2 [arrestin-2-(319-418)] or Eps15 [Eps15(E Delta 95-295)] increased cell surface expression of mGluR1a and blocked constitutive receptor internalization. In the presence of these dominant negative mutants, incubation of cells with LY367385 and BAY36-7620 produced no further increase in cell surface expression of mGluR1a. Taken together, these results suggest that the constitutive activity of mGluR1a triggers the internalization of the receptor through an arrestin- and clathrin-dependent pathway, and that inverse agonists increase the cell surface expression of mGluR1a by promoting an inactive form of mGluR1a, which does not undergo constitutive internalization.  相似文献   

2.
Treatment of HEK293 cells expressing the delta-opioid receptor with agonist [d-Pen(2,5)]enkephalin (DPDPE) resulted in the rapid phosphorylation of the receptor. We constructed several mutants of the potential phosphorylation sites (Ser/Thr) at the carboxyl tail of the receptor in order to delineate the receptor phosphorylation sites and the agonist-induced desensitization and internalization. The Ser and Thr were substituted to alanine, and the corresponding mutants were transiently and stably expressed in HEK293 cells. We found that only two residues, i.e. Thr(358) and Ser(363), were phosphorylated, with Ser(363) being critical for the DPDPE-induced phosphorylation of the receptor. Furthermore, using alanine and aspartic acid substitutions, we found that the phosphorylation of the receptor is hierarchical, with Ser(363) as the primary phosphorylation site. Here, we demonstrated that DPDPE-induced rapid receptor desensitization, as measured by adenylyl cyclase activity, and receptor internalization are intimately related to phosphorylation of Thr(358) and Ser(363), with Thr(358) being involved in the receptor internalization.  相似文献   

3.
The internalization of 125I-epidermal growth factor (EGF) by A431 cells was investigated. Control cells were able to internalize over 80% of receptor-bound 125I-EGF. By contrast, cells treated with EGF before incubation with 125I-EGF internalized only 50% of the surface-bound radioligand. The ligand-induced decrease in 125I-EGF internalization showed a dose response to EGF with half-maximal effect occurring at 3 nM. The alteration in the extent of 125I-EGF internalization did not require extended treatment with high concentrations of the hormone. When the internalization of picomolar versus nanomolar concentrations of EGF were compared, the lower concentrations of 125I-EGF were more completely internalized than the higher concentrations of radioligand. These data are consistent with the hypothesis that occupation of the EGF receptor by hormone rapidly leads to the activation of cellular processes which effectively desensitize the system to further ligand-induced internalization. The decrease in the extent of ligand internalization occurred in cells in which the protein kinase C (Ca2+/phospholipid-dependent enzyme) activity had been down-regulated by prolonged treatment with 12-O-tetradecanoyl-phorbol-13-acetate implying that the desensitization process is independent of protein kinase C. However, the effects of EGF on the extent of hormone internalization could be mimicked by the addition of A23187 and could be prevented by pretreatment of the cells with calmodulin antagonists suggesting the possibility that Ca2+-calmodulin is involved in the regulation of EGF receptor internalization in A431 cells.  相似文献   

4.
Platelet-activating factor (PAF) is a potent phospholipid mediator involved in various disease states such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G protein-coupled receptor family. Following PAF stimulation, cells become rapidly desensitized; this refractory state can be maintained for hours and is dependent on PAFR phosphorylation, internalization, and down-regulation. In this report, we characterized ligand-induced, long term PAFR desensitization, and pathways leading to its degradation. Some GPCRs are known to be targeted to proteasomes for degradation while others traffic via the early/late endosomes toward lysosomes. Specific inhibitors of lysosomal proteases and inhibitors of the proteasome were effective in reducing the ligand-induced PAFR down-regulation by 40 and 25%, respectively, indicating the importance of receptor targeting to both lysosomes and proteasomes in long term cell desensitization to PAF. The effects of the proteasome and lysosomal protease inhibitors were additive and, together, completely blocked ligand-induced degradation of PAFR. Using dominant-negative Rab5 and 7 and colocalization of the PAFR with the early endosome autoantigen I (EEAI) or transferrin, we confirmed that ligand-induced PAFR down-regulation was Rab5/7-dependent and involved lysosomal degradation. In addition, we also demonstrated that PAFR was ubiquitinated in an agonist-independent manner. However, a dominant negative ubiquitin ligase (NCbl) reduced PAFR ubiquitination and inhibited ligand-induced but not basal receptor degradation. Our results indicate that PAFR degradation can occur via both the proteasome and lysosomal pathways and ligand-stimulated degradation is ubiquitin-dependent.  相似文献   

5.
It is generally accepted that the internalization and desensitization of mu-opioid receptor (MOR) involves receptor phosphorylation and beta-arrestin recruitment. However, a mutant MOR, which is truncated after the amino acid residue Ser363 (MOR363D), was found to undergo phosphorylation-independent internalization and desensitization. As expected, MOR363D, missing the putative agonist-induced phosphorylation sites, did not exhibit detectable agonist-induced phosphorylation. MOR363D underwent slower internalization as reflected in the attenuation of membrane translocation of beta-arrestin 2 when compared with wild type MOR, but the level of receptor being internalized was similar to that of wild type MOR after 4 h of etorphine treatment. Furthermore, MOR363D was observed to desensitize faster than that of wild type MOR upon agonist activation. Surface biotinylation assay demonstrated that the wild type receptors recycled back to membrane after agonist-induced internalization, which contributed to the receptor resensitization and thus partially reversed the receptor desensitization. On the contrary, MOR363D did not recycle after internalization. Hence, MOR desensitization is controlled by the receptor internalization and the recycling of internalized receptor to cell surface in an active state. Taken together, our data indicated that receptor phosphorylation is not absolutely required in the internalization, but receptor phosphorylation and subsequent beta-arrestin recruitment play important roles in the resensitization of internalized receptors.  相似文献   

6.
7.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

8.
The rat somatostatin receptor subtype 2 (SSTR2) is rapidly internalized and phosphorylated in the presence of somatostatin 14 (SST14). Several C-terminal deletion constructs of SSTR2 have been investigated for their ability to undergo agonist-dependent internalization by using biochemical ligand binding assays and confocal microscopic analysis. Whereas mutant receptors lacking either 10 (delta359), 30 (delta339), or 44 (delta325) amino acid residues at the C terminus required SST14 for internalization, a construct lacking the last 20 amino acids (delta349) was detected mostly intracellularly and independently of the presence of the agonist. When internalization was blocked by sucrose, the delta349 receptor remained at the cell surface, strongly indicating that this mutant is internalized in an agonist-independent fashion. An increased affinity for agonists as measured in membrane binding assays and a reduced level of forskolin-stimulated cyclic AMP accumulation in human embryonic kidney cells expressing delta349 are properties that are characteristic of agonist-independent receptor activity. Delta349 is not phosphorylated detectably in the absence of agonist, demonstrating that phosphorylation per se is not a prerequisite for internalization of SSTR2. This observation is in line with data obtained for the delta325 mutant, which was internalized in an agonist-dependent manner, but not phosphorylated in either the presence or absence of SST14. We conclude that truncation of the SSTR2 C terminus at position 349 leads to agonist-independent, constitutive activity and internalization.  相似文献   

9.
The melanocortins (alpha-melanocyte-stimulating hormone and adrenocorticotropin) act on epidermal melanocytes to increase melanogenesis, the eumelanin/pheomelanin ratio and dendricity. These actions are mediated by the heptahelical melanocortin 1 receptor (MC1R), positively coupled to adenylyl cyclase. Gain-of-function mouse Mc1r alleles are associated with a dark, eumelanic coat. Conversely, loss-of-function variants, or overexpression of agouti, a natural melanocortin antagonist, yield yellow, pheomelanic furs. In humans, loss-of-function MC1R variants are associated with fair skin, poor tanning, propensity to freckle and increased skin cancer risk. Therefore, MC1R is a key regulator of mammalian pigmentation. Several observations such as induction of constitutive pigmentation in amelanotic mouse melanoma cells following expression of MC1R indicate that the receptor might display agonist-independent activity. We report a systematic and comparative study of MC1R and Mc1r constitutive activity. We show that expression of MC1R in heterologous systems leads to an agonist-independent increase in cyclic adenosine monophophate (cAMP). Basal signalling is a function of receptor expression and is two to fourfold higher for MC1R than for Mc1r. Moreover, it is observed in human melanoma cells over-expressing the MC1R. Constitutive signalling is abolished or reduced by point mutations of MC1R impairing the response to agonists, and is only doubled by the Lys94Glu mutation, mimicking the constitutively active mouse E(so-3J) allele. Stable or transient expression of wild-type MC1R, but not of loss-of-function mutants, potently stimulates forskolin activation of adenylyl cyclase, a common feature of constitutively active Gs-coupled receptors. Therefore, human MC1R displays a strong agonist-independent constitutive activity.  相似文献   

10.
Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations 相似文献   

11.
12.
Following activation by ligand, most G protein-coupled receptors undergo rapid phosphorylation. This is accompanied by a drastic decrease in the efficacy of continued or repeated stimulation, due to receptor uncoupling from G protein and receptor internalization. Such processing steps have been shown to be absolutely dependent on receptor phosphorylation in the case of the N-formyl peptide receptor (FPR). In this study, we report results that indicate that the mechanisms responsible for desensitization and internalization are distinct. Using site-directed mutagenesis of the serine and threonine residues of the FPR carboxyl terminus, we have characterized regions that differentially regulate these two processes. Whereas substitution of all 11 Ser/Thr residues in the carboxyl terminus prevents both desensitization and internalization, substitution of four Ser/Thr residues between 328-332 blocks desensitization but has no effect on internalization. Similarly, substitution of four Ser/Thr residues between positions 334 and 339 results in a deficit in desensitization but again no decrease in internalization, suggesting that phosphorylation at either site evokes receptor internalization, whereas maximal desensitization requires phosphorylation at both sites. These results also indicate that receptor internalization is not involved in the process of desensitization. Further analysis of the residues between 328-332 revealed that restoration either of Ser(328) and Thr(329) or of Thr(331) and Ser(332) was sufficient to restore desensitization, suggesting that phosphorylation within either of these two sites, in addition to sites between residues 334 and 339, is sufficient to produce desensitization. Taken together, these results indicate that the mechanisms involved in FPR processing (uncoupling from G proteins and internalization) are regulated differentially by phosphorylation at distinct sites within the carboxyl terminus of the FPR. The relevance of this paradigm to other G protein-coupled receptors is discussed.  相似文献   

13.
G-protein receptor kinase and beta-arrestin mediated desensitization of the rat kappa-opioid receptor (KOR) was previously shown using Xenopus oocyte expression to require serine 369 within the C terminus of KOR. To define the effects of phosphorylation of this residue in desensitization and internalization processes in mammalian expression systems, wild-type KOR-green fluorescent protein (KOR-GFP) and KOR(S369A)-GFP were stably expressed in AtT-20 and HEK293 cells. Using whole-cell patch clamp recording in transfected AtT-20 cells, agonist activation of either kappa receptor form produced equivalent activation of the intrinsic G-protein-gated inwardly rectifying potassium channel. Incubation for 60 min with the kappa agonist U50,488 (100 nm) desensitized the response in cells expressing wild-type KOR-GFP by 86% but had no effect on KOR(S369A)-GFP-expressing cells. Phosphorylation of serine 369 was detected using a phosphospecific antibody (KOR-P) able to distinguish the phosphorylated form of the receptor. The agonist-induced increase in KOR-P labeling was dose-dependent, blocked by co-treatment with the kappa antagonist norbinaltorphimine, and prevented by co-expression of the dominant negative form of the G-protein receptor kinase, GRK2(K220R). In contrast, agonist-induced increase in KOR-P labeling was not evident in KOR(S369A) expressing cells. Prolonged activation resulted in receptor internalization that was also blocked by KOR(S369A) substitution, but interestingly, KOR-P labeling was evident at lower agonist concentrations than required to induce internalization. Following the removal of agonist, receptor dephosphorylation detected by loss of KOR-P labeling was complete within 60 min, could be blocked by okadaic acid, and was not blocked by sucrose inhibition of receptor internalization. These results demonstrate that GRK-mediated phosphorylation of serine 369 mediates rat KOR desensitization and internalization.  相似文献   

14.
Various proinflammatory and vasoactive actions of platelet-activating factor (PAF) are mediated through a specific G-protein-coupled PAF receptor (PAFR). We identified a novel DNA variant in the human PAFR gene, which substitutes an aspartic acid for an alanine residue at position 224 (A224D) in the putative third cytoplasmic loop. This mutation was observed in a Japanese population at an allele frequency of 7.8%. To delineate the functional consequences of this structural alteration, Chinese hamster ovary cells were stably transfected with constructs encoding either wild-type or A224D mutated PAFR. No significant difference was observed in the expression level of the receptor or the affinity to PAF or to an antagonist, WEB2086, between the cells transfected with wild-type and mutant PAFR. Chinese hamster ovary cells expressing A224D mutant PAFR displayed partial but significant reduction of PAF-induced intracellular signals such as calcium mobilization, inositol phosphate production, inhibition of adenylyl cyclase, and chemotaxis. These findings suggest that this variant receptor produced by a naturally occurring mutation exhibits impaired coupling to G-proteins and may be a basis for interindividual variation in PAF-related physiological responses, disease predisposition or phenotypes, and drug responsiveness.  相似文献   

15.
We have shown in a previous study that desensitization and internalization of the human dopamine D(1) receptor following short-term agonist exposure are mediated by temporally and biochemically distinct mechanisms. In the present study, we have used site-directed mutagenesis to remove potential phosphorylation sites in the third intracellular loop and carboxyl tail of the dopamine D(1) receptor to study these processes. Mutant D(1) receptors were stably transfected into Chinese hamster ovary cells, and kinetic parameters were measured. Mutations of Ser/Thr residues to alanine in the carboxyl tail demonstrated that the single substitution of Thr-360 abolished agonist-induced phosphorylation and desensitization of the receptor. Isolated mutation of the adjacent glutamic acid Glu-359 also abolished agonist-induced phosphorylation and desensitization of the receptor. These data suggest that Thr-360 in conjunction with Glu-359 may comprise a motif necessary for GRK2-mediated phosphorylation and desensitization. Agonist-induced internalization was not affected with mutation of either the Thr-360 or the Glu-359 residues. However, receptors with Ser/Thr residues mutated in the distal carboxyl tail (Thr-446, Thr-439, and Ser-431) failed to internalize in response to agonist activation, but were able to desensitize normally. These results indicate that agonist-induced desensitization and internalization are regulated by separate and distinct serine and threonine residues within the carboxyl tail of the human dopamine D(1) receptor.  相似文献   

16.
Oncogenic activation of the macrophage colony stimulating factor (M-CSF) receptor (c-Fms) requires mutation or truncation of the carboxyl terminus and specific amino acid substitutions in or near the fourth immunoglobulin (Ig)-like loop in the extracellular domain. Using a murine c-Fms system, we investigated the effect of C-terminal truncation, substitutions at amino acids 301 and 374 in the fourth Ig-like loop of the extracellular domain, or the combined mutations on individual steps in receptor activation. The mutations at amino acids 301 and 374 were necessary, but not sufficient, for receptor dimerization in the absence of M-CSF. Only receptors with a truncated C-terminus as well as the extracellular domain mutations dimerized efficiently in the absence of M-CSF, suggesting that the C-terminus of c-Fms also regulates receptor oligomerization. Truncation of the C-terminus alone did not cause receptor dimerization and did not activate the kinase enzymatic activity. Thus, truncation of the C-terminus did not activate receptor monomers in cis. Receptors with both a truncated C-terminus and the extracellular domain mutations underwent ligand-independent aggregation, transphosphorylation, and phosphorylation of cellular proteins, followed by rapid internalization and degradation. These results suggest that M-CSF binding to c-Fms initiates activation by inducing conformational changes in both the cytoplasmic C-terminal domain and the fourth Ig-like loop of the extracellular domain, leading to the formation of stable receptor dimers.  相似文献   

17.
血小板活化因子受体研究进展   总被引:1,自引:0,他引:1  
血汴板活化因子是通过靶细胞膜上的受体而发挥其作用的,该受体属G联的受体家族,含342个氨基酸,有7个疏水的跨膜片段。其作用机制是通过激活磷酯酰肌醇、钙信使系统及相关蛋白激酶,使某些蛋白质发生磷酸化并产生相应的生物学效应。  相似文献   

18.
In this report we demonstrate evidence which strongly suggests that human alveolar macrophages possess receptor for the platelet activating factor (PAF). We investigated the effects of PAF by measuring (a) the intracellular free calcium concentration [Ca2+]i, using the fura-2 method in single isolated cells and (b) the production of superoxide anion. PAF increased [Ca2+]i in a dose-dependent manner (EC50 = 1 x 10(-8) M), whereas lyso-PAF had no effect. The initial increase of [Ca2+]i was followed by a slow decrease to a sustained elevation of [Ca2+]i significantly above basal values. While the initial rise in [Ca2+]i was only slightly reduced in Ca(2+)-free medium (1 mM EGTA), the sustained phase was totally abolished. The sustained calcium increase was also blocked after preincubation of AM with the calcium-channel blocker nitrendipine. PAF increased the production of superoxide anion (O2-) by human alveolar macrophages in a dose- dependent manner. The effects of PAF on [Ca2+]i and (O2-) could be blocked by the PAF-specific antagonist WEB 2086 dose dependently, indicating a receptor-mediated event.  相似文献   

19.
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is an important mechanism for regulating signaling transduction of functional receptors at the plasma membrane. We demonstrate here that both caveolae/lipid-rafts- and clathrin-coated-pits-mediated pathways were involved in agonist-induced endocytosis of the cannabinoid type 1 receptor (CB1R) in stably transfected human embryonic kidney (HEK) 293 cells and that the internalized receptors were predominantly sorted into recycling pathway for reactivation. The treatment of CB1 receptors with the low endocytotic agonist Δ9-THC induced a faster receptor desensitization and slower resensitization than the high endocytotic agonist WIN 55,212-2. In addition, the blockade of receptor endocytosis or recycling pathway markedly enhanced agonist-induced CB1 receptor desensitization. Furthermore, co-expression of phospholipase D2, an enhancer of receptor endocytosis, reduced CB1 receptor desensitization, whereas co-expression of a phospholipase D2 negative mutant significantly increased the desensitization after WIN 55,212-2 treatment. These findings provide evidences for the importance of receptor endocytosis in counteracting CB1 receptor desensitization by facilitating receptor reactivation. Moreover, in primary cultured neurons, the low endocytotic agonist Δ9-THC or anandamide exhibited a greater desensitization of endogenous CB1 receptors than the high endocytotic agonist WIN 55,212-2, CP 55940 or 2-arachidonoyl glycerol, indicating that cannabinoids with high endocytotic efficacy might cause reduced development of cannabinoid tolerance to some kind cannabinoid-mediated effects.  相似文献   

20.
In the current study, we investigated the role of receptor phosphorylation and beta-arrestins in delta-opioid receptor (DOR) signaling and trafficking by using a DOR mutant in which all Ser/Thr residues in the C terminus were mutated to Ala (DTS). We demonstrated that the DOR agonist D-[Pen(2),Pen(5)]enkephalin could induce receptor internalization and adenylyl cyclase (AC) desensitization of DTS, but with comparatively slower kinetics than those observed with wild type DOR. Blockade of the internalization of DTS by the dominant-negative mutant dynamin, dynamin K44E, did not affect AC desensitization. However, depletion of beta-arrestins almost totally blocked both internalization and AC desensitization of DTS. A BRET assay suggested that DOR phosphorylation promotes receptor selectivity for beta-arrestin 2 over beta-arrestin 1. Furthermore, in mouse embryonic fibroblast (MEF) cells lacking either beta-arrestin 1 (beta arr1(-/-)) or beta-arrestin 2 (beta arr2(-/-)), agonist-induced DTS desensitization and internalization were similar to that observed in wild type MEFs. In contrast, although DOR internalization decreased in both beta arr1(-/-) MEFs and beta arr2(-/-) MEFs, DPDPE-induced DOR desensitization was significantly reduced in beta arr2(-/-) MEFs, but not in beta arr1(-/-) MEFs. Additionally, the BRET assay suggested that depletion of phosphorylation did not influence the stability of the receptor-beta-arrestin complex. Consistent with this observation, DTS did not recycle after internalization, which is like wild type DOR. Taken together, these results indicate that receptor phosphorylation confers DOR selectivity for beta-arrestin 2 without affecting the stability of the receptor-beta-arrestin complex and the fate of the internalized receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号