首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Donohue MC  Overholser R  Xu R  Vaida F 《Biometrika》2011,98(3):685-700
We study model selection for clustered data, when the focus is on cluster specific inference. Such data are often modelled using random effects, and conditional Akaike information was proposed in Vaida & Blanchard (2005) and used to derive an information criterion under linear mixed models. Here we extend the approach to generalized linear and proportional hazards mixed models. Outside the normal linear mixed models, exact calculations are not available and we resort to asymptotic approximations. In the presence of nuisance parameters, a profile conditional Akaike information is proposed. Bootstrap methods are considered for their potential advantage in finite samples. Simulations show that the performance of the bootstrap and the analytic criteria are comparable, with bootstrap demonstrating some advantages for larger cluster sizes. The proposed criteria are applied to two cancer datasets to select models when the cluster-specific inference is of interest.  相似文献   

2.
Fieuws S  Verbeke G 《Biometrics》2006,62(2):424-431
A mixed model is a flexible tool for joint modeling purposes, especially when the gathered data are unbalanced. However, computational problems due to the dimension of the joint covariance matrix of the random effects arise as soon as the number of outcomes and/or the number of used random effects per outcome increases. We propose a pairwise approach in which all possible bivariate models are fitted, and where inference follows from pseudo-likelihood arguments. The approach is applicable for linear, generalized linear, and nonlinear mixed models, or for combinations of these. The methodology will be illustrated for linear mixed models in the analysis of 22-dimensional, highly unbalanced, longitudinal profiles of hearing thresholds.  相似文献   

3.
Guo W 《Biometrics》2002,58(1):121-128
In this article, a new class of functional models in which smoothing splines are used to model fixed effects as well as random effects is introduced. The linear mixed effects models are extended to nonparametric mixed effects models by introducing functional random effects, which are modeled as realizations of zero-mean stochastic processes. The fixed functional effects and the random functional effects are modeled in the same functional space, which guarantee the population-average and subject-specific curves have the same smoothness property. These models inherit the flexibility of the linear mixed effects models in handling complex designs and correlation structures, can include continuous covariates as well as dummy factors in both the fixed or random design matrices, and include the nested curves models as special cases. Two estimation procedures are proposed. The first estimation procedure exploits the connection between linear mixed effects models and smoothing splines and can be fitted using existing software. The second procedure is a sequential estimation procedure using Kalman filtering. This algorithm avoids inversion of large dimensional matrices and therefore can be applied to large data sets. A generalized maximum likelihood (GML) ratio test is proposed for inference and model selection. An application to comparison of cortisol profiles is used as an illustration.  相似文献   

4.
In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity.  相似文献   

5.
Valid inference in random effects meta-analysis   总被引:2,自引:0,他引:2  
The standard approach to inference for random effects meta-analysis relies on approximating the null distribution of a test statistic by a standard normal distribution. This approximation is asymptotic on k, the number of studies, and can be substantially in error in medical meta-analyses, which often have only a few studies. This paper proposes permutation and ad hoc methods for testing with the random effects model. Under the group permutation method, we randomly switch the treatment and control group labels in each trial. This idea is similar to using a permutation distribution for a community intervention trial where communities are randomized in pairs. The permutation method theoretically controls the type I error rate for typical meta-analyses scenarios. We also suggest two ad hoc procedures. Our first suggestion is to use a t-reference distribution with k-1 degrees of freedom rather than a standard normal distribution for the usual random effects test statistic. We also investigate the use of a simple t-statistic on the reported treatment effects.  相似文献   

6.
Li E  Zhang D  Davidian M 《Biometrics》2004,60(1):1-7
The relationship between a primary endpoint and features of longitudinal profiles of a continuous response is often of interest, and a relevant framework is that of a generalized linear model with covariates that are subject-specific random effects in a linear mixed model for the longitudinal measurements. Naive implementation by imputing subject-specific effects from individual regression fits yields biased inference, and several methods for reducing this bias have been proposed. These require a parametric (normality) assumption on the random effects, which may be unrealistic. Adapting a strategy of Stefanski and Carroll (1987, Biometrika74, 703-716), we propose estimators for the generalized linear model parameters that require no assumptions on the random effects and yield consistent inference regardless of the true distribution. The methods are illustrated via simulation and by application to a study of bone mineral density in women transitioning to menopause.  相似文献   

7.
The compliance score in randomized trials is a measure of the effect of randomization on treatment received. It is in principle a group-level pretreatment variable and so can be used where individual-level measures of treatment received can produce misleading inferences. The interpretation of models with the compliance score as a regressor of interest depends on the link function. Using the identity link can lead to valid inference about the effects of treatment received even in the presence of nonrandom noncompliance; such inference is more problematic for nonlinear links. We illustrate these points with data from two randomized trials.  相似文献   

8.
Simultaneous inference in general parametric models   总被引:6,自引:0,他引:6  
Simultaneous inference is a common problem in many areas of application. If multiple null hypotheses are tested simultaneously, the probability of rejecting erroneously at least one of them increases beyond the pre-specified significance level. Simultaneous inference procedures have to be used which adjust for multiplicity and thus control the overall type I error rate. In this paper we describe simultaneous inference procedures in general parametric models, where the experimental questions are specified through a linear combination of elemental model parameters. The framework described here is quite general and extends the canonical theory of multiple comparison procedures in ANOVA models to linear regression problems, generalized linear models, linear mixed effects models, the Cox model, robust linear models, etc. Several examples using a variety of different statistical models illustrate the breadth of the results. For the analyses we use the R add-on package multcomp, which provides a convenient interface to the general approach adopted here.  相似文献   

9.
The two-period cross-over experiment for clinical trials has been examined by several writers following a Gaussian linear model approach. Some authors have expressed interest in the “derivation of the finite permutation model” and have pointed out that the randomization approach to modeling the two-period cross-over design “would highlight the importance of randomizing the subjects to the two groups as a basis for inference”. However, in the literature, there is no development of the randomization approach to this important design. In this paper, after a statement of the experimental design and formulation of the observation random variables of the finite population, two additive randomization models—one with residual effects, the other without—which are the analogues of Grizzle's Gaussian models, are derived. Statistical inference is developed for these randomization models and the results are compared with those of the corresponding Gaussian models. Also, exact inference based upon Fischer's approach is presented.  相似文献   

10.
Kneib T  Fahrmeir L 《Biometrics》2006,62(1):109-118
Motivated by a space-time study on forest health with damage state of trees as the response, we propose a general class of structured additive regression models for categorical responses, allowing for a flexible semiparametric predictor. Nonlinear effects of continuous covariates, time trends, and interactions between continuous covariates are modeled by penalized splines. Spatial effects can be estimated based on Markov random fields, Gaussian random fields, or two-dimensional penalized splines. We present our approach from a Bayesian perspective, with inference based on a categorical linear mixed model representation. The resulting empirical Bayes method is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to inverse smoothing parameters, are estimated using (approximate) restricted maximum likelihood. In simulation studies we investigate the performance of different choices for the spatial effect, compare the empirical Bayes approach to competing methodology, and study the bias of mixed model estimates. As an application we analyze data from the forest health survey.  相似文献   

11.
Joint regression analysis of correlated data using Gaussian copulas   总被引:2,自引:0,他引:2  
Song PX  Li M  Yuan Y 《Biometrics》2009,65(1):60-68
Summary .  This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.  相似文献   

12.
13.
In this article, we propose a two-stage approach to modeling multilevel clustered non-Gaussian data with sufficiently large numbers of continuous measures per cluster. Such data are common in biological and medical studies utilizing monitoring or image-processing equipment. We consider a general class of hierarchical models that generalizes the model in the global two-stage (GTS) method for nonlinear mixed effects models by using any square-root-n-consistent and asymptotically normal estimators from stage 1 as pseudodata in the stage 2 model, and by extending the stage 2 model to accommodate random effects from multiple levels of clustering. The second-stage model is a standard linear mixed effects model with normal random effects, but the cluster-specific distributions, conditional on random effects, can be non-Gaussian. This methodology provides a flexible framework for modeling not only a location parameter but also other characteristics of conditional distributions that may be of specific interest. For estimation of the population parameters, we propose a conditional restricted maximum likelihood (CREML) approach and establish the asymptotic properties of the CREML estimators. The proposed general approach is illustrated using quartiles as cluster-specific parameters estimated in the first stage, and applied to the data example from a collagen fibril development study. We demonstrate using simulations that in samples with small numbers of independent clusters, the CREML estimators may perform better than conditional maximum likelihood estimators, which are a direct extension of the estimators from the GTS method.  相似文献   

14.
A class of generalized linear mixed models can be obtained by introducing random effects in the linear predictor of a generalized linear model, e.g. a split plot model for binary data or count data. Maximum likelihood estimation, for normally distributed random effects, involves high-dimensional numerical integration, with severe limitations on the number and structure of the additional random effects. An alternative estimation procedure based on an extension of the iterative re-weighted least squares procedure for generalized linear models will be illustrated on a practical data set involving carcass classification of cattle. The data is analysed as overdispersed binomial proportions with fixed and random effects and associated components of variance on the logit scale. Estimates are obtained with standard software for normal data mixed models. Numerical restrictions pertain to the size of matrices to be inverted. This can be dealt with by absorption techniques familiar from e.g. mixed models in animal breeding. The final model fitted to the classification data includes four components of variance and a multiplicative overdispersion factor. Basically the estimation procedure is a combination of iterated least squares procedures and no full distributional assumptions are needed. A simulation study based on the classification data is presented. This includes a study of procedures for constructing confidence intervals and significance tests for fixed effects and components of variance. The simulation results increase confidence in the usefulness of the estimation procedure.  相似文献   

15.
We present a method for estimating the parameters in random effects models for survival data when covariates are subject to missingness. Our method is more general than the usual frailty model as it accommodates a wide range of distributions for the random effects, which are included as an offset in the linear predictor in a manner analogous to that used in generalized linear mixed models. We propose using a Monte Carlo EM algorithm along with the Gibbs sampler to obtain parameter estimates. This method is useful in reducing the bias that may be incurred using complete-case methods in this setting. The methodology is applied to data from Eastern Cooperative Oncology Group melanoma clinical trials in which observations were believed to be clustered and several tumor characteristics were not always observed.  相似文献   

16.
Chen Q  Ibrahim JG 《Biometrics》2006,62(1):177-184
We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a sensitivity analysis for model misspecification of the missing covariate distribution and/or missing data mechanism. The semiparametric model consists of a generalized additive model (GAM) for the covariate distribution and/or missing data mechanism. Penalized regression splines are used to express the GAMs as a generalized linear mixed effects model, in which the variance of the corresponding random effects provides an intuitive index for choosing between the semiparametric and parametric model. Maximum likelihood estimates are then obtained via the EM algorithm. Simulations are given to demonstrate the methodology, and a real data set from a melanoma cancer clinical trial is analyzed using the proposed methods.  相似文献   

17.
Zhang P  Song PX  Qu A  Greene T 《Biometrics》2008,64(1):29-38
Summary .  This article presents a new class of nonnormal linear mixed models that provide an efficient estimation of subject-specific disease progression in the analysis of longitudinal data from the Modification of Diet in Renal Disease (MDRD) trial. This new analysis addresses the previously reported finding that the distribution of the random effect characterizing disease progression is negatively skewed. We assume a log-gamma distribution for the random effects and provide the maximum likelihood inference for the proposed nonnormal linear mixed model. We derive the predictive distribution of patient-specific disease progression rates, which demonstrates rather different individual progression profiles from those obtained from the normal linear mixed model analysis. To validate the adequacy of the log-gamma assumption versus the usual normality assumption for the random effects, we propose a lack-of-fit test that clearly indicates a better fit for the log-gamma modeling in the analysis of the MDRD data. The full maximum likelihood inference is also advantageous in dealing with the missing at random (MAR) type of dropouts encountered in the MDRD data.  相似文献   

18.
Wang Z  Louis TA 《Biometrics》2004,60(4):884-891
Marginal models and conditional mixed-effects models are commonly used for clustered binary data. However, regression parameters and predictions in nonlinear mixed-effects models usually do not have a direct marginal interpretation, because the conditional functional form does not carry over to the margin. Because both marginal and conditional inferences are of interest, a unified approach is attractive. To this end, we investigate a parameterization of generalized linear mixed models with a structured random-intercept distribution that matches the conditional and marginal shapes. We model the marginal mean of response distribution and select the distribution of the random intercept to produce the match and also to model covariate-dependent random effects. We discuss the relation between this approach and some existing models and compare the approaches on two datasets.  相似文献   

19.
Linear mixed effects models are widely used to analyze a clustered response variable. Motivated by a recent study to examine and compare the hospital length of stay (LOS) between patients undertaking percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) from several international clinical trials, we proposed a bivariate linear mixed effects model for the joint modeling of clustered PCI and CABG LOSs where each clinical trial is considered a cluster. Due to the large number of patients in some trials, commonly used commercial statistical software for fitting (bivariate) linear mixed models failed to run since it could not allocate enough memory to invert large dimensional matrices during the optimization process. We consider ways to circumvent the computational problem in the maximum likelihood (ML) inference and restricted maximum likelihood (REML) inference. Particularly, we developed an expected and maximization (EM) algorithm for the REML inference and presented an ML implementation using existing software. The new REML EM algorithm is easy to implement and computationally stable and efficient. With this REML EM algorithm, we could analyze the LOS data and obtained meaningful results.  相似文献   

20.
Joint modeling of longitudinal data and survival data has been used widely for analyzing AIDS clinical trials, where a biological marker such as CD4 count measurement can be an important predictor of survival. In most of these studies, a normal distribution is used for modeling longitudinal responses, which leads to vulnerable inference in the presence of outliers in longitudinal measurements. Powerful distributions for robust analysis are normal/independent distributions, which include univariate and multivariate versions of the Student's t, the slash and the contaminated normal distributions in addition to the normal. In this paper, a linear‐mixed effects model with normal/independent distribution for both random effects and residuals and Cox's model for survival time are used. For estimation, a Bayesian approach using Markov Chain Monte Carlo is adopted. Some simulation studies are performed for illustration of the proposed method. Also, the method is illustrated on a real AIDS data set and the best model is selected using some criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号