首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various benzo- and naphthoquinone derivatives were introducedinto the purified photosystem II Dl-D2-cytochrome b559 reactioncenter complex, which lacks the intrinsic plasto-quinone electronacceptors. Effects of these quinones on the electron transferreactions in nanoseconds to milliseconds time range were studiedat room and cryogenic temperatures. 1) The addition of quinonesto the purified photosystem II reaction center complex suppressedthe nanosecond charge recombination between oxidized reactioncenter chlorophyll a (P680+) and reduced pheophytin a (Ph),and stabilized P680+ up to millisecond time range at 280 K andat 77 K. 2) In the reaction center complex supplemented withdibromothymoquinone (DBMIB), P68O was almost fully oxidizedand cytochrome b559 was partially reduced by flash excitation.A semi-quinone-like signal with a peak around 320 nm was alsoinduced but the shift of pheophytin absorption band (C55O) wasnot observed. 3) Halogenated quinones, especially DBMIB, werebetter electron acceptors than unsubstituted or methylated quinones.4) The affinities of quinones to the reaction center complexwere weakly dependent on their molecular structure. (Received July 9, 1991; Accepted August 15, 1991)  相似文献   

2.
Nitrite reductase was extracted from the red alga Porphyra yezoensisUeda and purified through precipitation with ammonium sulfate,column chromatographies, and polyacrylamide gel disk electrophoresis.The enzyme preparation thus obtained showed a single band ondisk electrophoresis. The absorption spectrum had three maxima at 385 nm (Soret band),580 nm (-band), and 278 nm; the ratio of absorbance of the Soretband to the -band was 4.3. The molecular weight and the numberof amino acid residues were estimated to be 63,000 and 601,respectively. The enzyme activity was optimal at around pH 7.5, and its activitywas heat labile as indicated by reduction of activity by about70% when heated at 37°C for 10 min. The enzyme used ferredoxin and methyl viologen, but not NADP+or NAD+, as the electron carriers. Moreover, reduced forms ofthe latter two showed no effect on its activity. Km values ofthis enzyme for NO2, Fd, and MV were 8.1 x 10–4M, 4.3 x 10–8 M, and 3.7 x 10–4 M, respectively.Almost half of its activity was lost when potassium cyanidewas added at a concentration as low as 10–5 M, and theKi value was 1.8 x 10–5 M. Thus, the nitrite reductaseof Porphyra must be systematically grouped in EC 1.7.7.1 [EC] . Itresembled closely that of Chlorella, except for the amountsof some amino acids. 1 Present address: Department of Biological Sciences, Universityof Tsukuba, Sakura-Mura, Ibaraki, 300-31 Japan. 2 Present address: Department of Fisheries, College of Agricultureand Veterinary Medicine, Nihon University, Shimouma, Setagaya-ku,Tokyo, 154 Japan. (Received June 10, 1975; )  相似文献   

3.
Cytochrome b561 was removed from chromatophores of a photoanaerobicallygrown Rhodopseudomonas sphaeroides by deoxycholate-cholate andTriton X-100 treatments of the chromatophores. The cytochromewas purified by ammonium sulfate fractionation and gel filtration.Its molecular weight was 45,000 (45 kD) and it was composedof three subunits with molecular weights of 23 kD, 19 kD andless than 6 kD. The cytochrome preparation had absorption maximaat 414 nm in the oxidized form, and at 428, 530 and 561 nm inthe reduced form. Its pi was 4.8. The midpoint potential ofthis cytochrome was 153 mV at pH 7.0. The compound was autooxidizable,and it had cytochrome c oxidase activity. (Received May 16, 1983; Accepted September 8, 1983)  相似文献   

4.
Sulphite-cytochrome c reductase (sulphite: ferricytochrome coxidoreductase, EC 1.8.2.1 [EC] ) derived from Thiobacillus novelluswas purified by chromatography on a DEAE-cellulose column andby gel filtration with a Sephadex G-100 column. Although thereductase thus purified moved as a single band both in gel filtrationand in isoelectric focusing it was always split into two bandsby polyacrylamide gel electrophoresis; the one had the enzymaticactivity and showed absorption spectrum of cytochrome, whilethe other had no activity and was colourless, in contrast withthe results reported by Charles and Suzuki [(1966) Biochim.Biophys. Acta 128: 522]. The enzymatic properties of the purifiedreductase were almost the same as those of the enzyme obtainedby Charles and Suzuki. Cytochrome c-551 free of the reductase activity was obtained.Its molecular weight was determined to be 23,000 by polyacrylamidegel electrophoresis in the presence of sodium dodecyl sulphate.The cytochrome seemed to exist in the organism as a complexwith the reductase or a subunit of the enzyme. In the stateof the complex with the enzyme, the cytochrome was reduced veryquickly on addition of sulphite, while the cytochrome free ofthe reductase activity was hardly reduced by the enzyme withsulphite. A sulphite oxidase system was reconstituted with the reductase,cytochrome c-550 and cytochrome oxidase highly purified fromthe bacterium. 1 Present address: Water Research Institute, Nagoya University,Nagoya 464, Japan 2 Present address: Institute for Biological Science, SumitomoChemical Co., Ltd., Takarazuka, Hyogo 665, Japan (Received January 23, 1981; Accepted March 9, 1981)  相似文献   

5.
A Cyt P450 (P450C4H) possessing trans-cinnamate 4-hydroxylase(C4H) activity was purified to apparent homogeneity from microsomesof etiolated mung bean seedlings. Upon SDS-polyacrylamide gelelectrophoresis, the purified preparation gave a single proteinband with a molecular mass of 58-kDa. Its specific P450 contentwas 12.6 nmol (mg protein)–1. Using NADPH as electrondonor, purified P450C4H aerobically converted trans-cinnamicacid to p-coumaric acid with a specific activity of 68 nmolmin–1 nmol–1 P450 in a reconstituted system containingNADPH-Cyt P450 reductase purified from the seedlings or rabbitliver microsomes, dilauroyl phosphatidylcholine, and cholate.This specific activity is by far the highest for reconstitutedC4H systems so far reported and provides direct evidence thatC4H activity is actually associated with a P450 protein. Inthe oxidized state P450C4H showed a typical low-spin type absorptionspectrum with a Soret peak at 419 nm. A partial spectral shiftto the high spin state was observed when trans-cinnamic acidwas added to oxidized P450C4H. By spectral titration, the dissociationconstant of the cinnamic acid-P450C4H complex was determinedto be 2.8 µM. This value is similar to the Km value (1.8µM) for trans-cinnamic acid determined in the reconstitutedsystem. (Received November 20, 1992; Accepted February 17, 1993)  相似文献   

6.
A procedure is described for the purification of phosphoenolpyruvatecarboxylase (EC 4.1.1.31 [EC] ) and NADP-dependent malic enzyme (EC1.1.1.40 [EC] ) from sugar cane leaves. Each enzyme was purified tohomogeneity as judged by sodium dodecyl sulfate-polyacrylamidegel electro-phoresis, with about 30% yield. Phosphoenolpyruvatecarboxylase was purified 54-fold. A molecular weight of 400,000and a homotetrameric structure were determined for the nativeenzyme. The purified carboxylase had a specific activity of20.0 {diaeresis}mol (mg protein)–1 min–1, and wasactivated by glucose-6-phosphate and inhibited by L-malate.Km values at pH 8.0 for phosphoenolpyruvate and bicarbonatewere 0.25 and O.l0 mM, respectively. NADP-malic enzyme, 356-foldpurified, exhibited a specific activity of 71.2 {diaeresis}mol(mg protein)–1 min–1 and was characterized as ahomotetramer with native molecular weight of 250,000. Purifiedmalic enzyme showed an absolute specificity for NADP+ and requireda divalent metal ion for activity. Km values of 0.33 and 0.008mM for L-malate and NADP+, respectively, were determined. Thisenzyme was inhibited by several organic acids, including ketoand amino acids; while succinate and citrate increased the enzymeactivity when assayed with 10{diaeresis}M L-malate. The effectsshown by amino acids and by citrate were dependent on pH, beinghigher at pH 8.0 than at pH 7.0. (Received October 26, 1988; Accepted February 3, 1989)  相似文献   

7.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

8.
NADP-malic enzyme (EC 1.1.1.40 [EC] ), which is involved in Crassulaceanacid metabolism (CAM), was purified to electrophoretic homogeneityfrom the leaves of the inducible CAM plant Mesembryanthemumcrystallinum. The NADP-malic enzyme, which was purified 1,146-fold,has a specific activity of 68.8 µmol (mg protein)–1min–1. The molecular weight of the subunits of the enzymewas 64 kDa. The native molecular weight of the enzyme was determinedby gel-filtration to be 390 kDa, indicating that the purifiedNADP-malic enzyme is a hexamer of identical subunits. The optimalpH for activity of the enzyme was around 7.2. Double-reciprocalplots of the enzymatic activity as a function of the concentrationof L-malate yielded straight lines both at pH 7.2 and at pH7.8 and did not reveal any evidence for cooperativity of bindingof L-malate. The Km value for L-malate was 0.35 mM. Hill plotsof the activity as a function of the concentration of NADP+indicated positive cooperativity in the binding of NADP+ tothe enzyme with a Hill coefficient (nH) of 2.0. An S0.5 value(the concentration giving half-maximal activity) of 9.9 µMfor NADP+ was obtained. Oxaloacetate inhibited the activityof the NADP-malic enzyme. Effects of succinate and NaHCO3 onthe activity of NADP-malic enzyme were small. (Received October 30, 1991; Accepted May 1, 1992)  相似文献   

9.
Assimilatory nitrate reductase (NADH) (EC 1.6.6.1 [EC] ) from thered alga Porphyra yezoensis was purified 5,700-fold by a combinationof polyethylene glycol (PEG) treatment, ammonium sulfate fractionation,chromatography on columns of butyl-Toyopearl 650-M, Blue SepharoseCL-6B, DEAE-cellulose (DE 52), and hydroxyapatite, gel filtrationon Sephacryl S-400. The purest preparation of the enzyme hada specific activity of 12.5 units mg–1 protein. A singleband of protein was detected after polyacrylamide gel electrophoresisunder nondenaturing conditions. This band corresponded to aband that stained positive for reduced methyl viologen-nitratereductase activity. The molecular weight of the native enzymewas estimated to be 220,000. A single band of a protein witha molecular weight of 100,000 was detected after sodium dodecylsulfate-polyacrylamide gel electrophoresis. These results indicatethat the native nitrate reductase is composed of two identicalsubunits. The homogeneous preparation of nitrate reductase hada UV/visible spectrum typical of a b-type cytochrome. The Kmvalues for NADH and KNO3 were 23 µM and 64 µM, respectively.The pH optimum for the reaction catalyzed by the nitrate reductasewas 8.3, while pH values that supported maximum partial activitiesranged from 7.0 to 8.5. Sulfhydryl reagents, such as p-HMB andNEM, inhibited full and NADH-utilizing partial activities, whilecyanide and azide were effective inhibitors of full and nitrate-reducingpartial activities. (Received March 3, 1993; Accepted September 6, 1993)  相似文献   

10.
A wall-bound endo-1,4-ß-glucanase (EC 3.2.1.4 [EC] ) wasobtained from a preparation of the cell walls of suspension-culturedpoplar cells and purified to electrophoretic homogeneity bycation-exchange, hydrophobic, and gel-filtration chromatography.The molecular mass was estimated to be 47 kDa by SDS-PAGE and48 kDa by gel filtration on Superdex 200 pg. The isoelectricpoint (pI) was 5.6. The purified enzyme catalyzed the endo-hydrolysisof carboxymethylcellulose with an optimal pH of 6.5, a Km of1.2 mg ml-1, and a Vmax of 280 units. The purified enzyme specificallyhydrolyzed the 1,4-ß-glucosyl linkages of carboxymethylcellulose,phospho-swollen cellulose, lichenan, xylan and xyloglucan. Theactivity of the enzyme was strongly stimulated by cysteine-HCl.The N-terminal sequence of the enzyme was similar to that ofan extracellular endo-1,4-ß-glucanase found in suspensioncultures of poplar cells and some homology was recognized toavocado fruit-ripening and bean abscission endo-1,4-ß-glucanases. 1This work was supported in part by a grant from the Toray ScienceFoundation, Japan, and by a Grant-in-Aid from the Ministry ofEducation, Science and Culture of Japan.  相似文献   

11.
Phosphoenolpyruvate (PEP) carboxylase (PEPCase, EC 4.1.1.31 [EC] )was purified to apparent electrophoretic homogeneity from photomixotrophicallycultured tobacco cells by ammonium sulfate fractionation, DEAE-Sephacel-,hydroxylapatite-, Phenyl-Sepharose CL-4B-, and Sepharose CL-6B-chromatography,and fast protein liquid chromatography on Mono Q. The purifiedenzyme had a specific activity of 32 units per mg protein, andits purity was determined by denaturing polyacrylamide gel electrophoresis.The native enzyme, with a molecular weight of about 440,000,was a tetramer of four identical subunits and showed maximumactivity at pH 8.5–9.0. Non-denaturing isoelectric focusingshowed a single band at pl 5.4. Substrate-saturation kineticsof the purified enzyme for PEP, bicarbonate, and Mg2$ were typicalMichaelis-Menten type, with Km-values of 60, 200, and 80µM,respectively. Most effectors which are known to influence theactivity of C4- or bacterial PEPCase had only small effectson the activity of the purified enzyme at optimum pH, whilesome inhibitory effects by organic acids (malate, citrate andoxaloacetate) and.an activating effect by glucose-6-phosphatewere observed at a suboptimal pH of 7.5. (Received September 30, 1987; Accepted December 14, 1987)  相似文献   

12.
High activity of phosphoenolpyruvate (PEP)-carboxykinase, orADP: oxalacetate (OAA) carboxy-lyase activity (a kind of EC4. 1. 1. 32) was discovered in enzyme extracts or partiallypurified preparations obtained from the brown algae, Eiseniabicyclis, Dictyota dichotoma, Spatoglossum pacificum; and Hizikiafusiformis. Enzyme activities were determined by measuring theradioactivity incorporated in the products of dark 14CO2-fixationand by spectrophotometric determinations. Except for the lowactivity of "malic enzyme" (EC 1. 1. 1.40), no activities ofother carboxylases, i.e. PEP-carboxylase, PEP-carboxytransphosphorylase,and pyruvate carboxylase could be detected in algal extractsprepared under various conditions. Malate dehydrogenase (EC1. 1. 1. 37), fumarase (EC 4. 2. 1. 2), and glutamic: oxalacetictransaminase (EC 2. 6. 1. 1) were also detected. The algal PEP-carboxykinase required ADP and Mn2+ for maximumactivity in the carboxylation reaction; and ATP and Mn2+, butnot GTP, for maximum activity in both the decarboxylation andOAA-14CO2-exchange reactions. The optimum pH of purified PEP-carboxykinase was in the regionof 7.0 to 7.3 in both the carboxylation and decarboxylationreactions, and its Km values for HCO3, PEP, and ADP were10 mM, 0.3 mM, and 0.07 mM, respectively, in the carboxylationreaction, and values for OAA and ATP were 0.05 mM and 0.4 mM,respectively, in the decarboxylation reaction. Furthermore,the decarboxylation reaction was markedly inhibited by 20 mMHCO3. The physiological role of PEP-carboxykinase as the enzyme responsiblefor the entrance reaction of the dark CO2-fixation is discussed. 1 Contributions from the Shimoda Marine Biological Station ofTokyo Kyoiku University, No. 236. This work was supported inpart by a Grant-in-Aid for Co-operative Research from the Ministryof Education, Japan and Matsunaga Science Foundation (to T.Ikawa). 2 Present address: Department of Antibiotics, the National Instituteof Health, Shinagawa, Tokyo, Japan. (Received February 22, 1972; )  相似文献   

13.
1. Polyphenol oxidase (o-diphenol : O2 oxidoreductase; E.C.1.10.3.1 [EC] ) was isolated from the other phenolases which werepresent in root-forming carrot callus, and its properties wereexamined. 2. The enzyme was purified about 45-fold over crudeextracts (precipitates between 40–70% saturation widiammonium sulfate) by a combination of Bio-gel filtration, protein-bagfiltration, and carboxymethyl cellulose chromatography. Thepurified oxidase was homogeneous according to polyacrylamidegel electrophoresis and Sephadex gel filtration. It was confirmedby CM-cellulose chromatography that the enzyme was absent incallus tissues without accompanying redifferentiation. 3. Themolecular weight of this oxidase was estimated to be 110,000-120,000 from molecular weight-mobility profiles on polyacrylamidegels containing sodium dodecyl sulfate and molecular size-elutionvolume correlations on Sephadex G-150 columns. 4. The enzymeoxidized o-diphenols but showed no detectable activity againstmonophenols. Pyrocatechol, dopamine, caffeic acid, and chlorogenicacid were effectual substrates of the enzyme with Km valuesranging from 10–3 M to 10–5M. The enzyme effectivelycatalyzed the oxidation of o-diphenols over the range of pH6.0 to 7.0 and was readily inactivated by heating. The enzymeactivity was slightly influenced by increasing ionic strength.The initial rate of the enzymic reaction was enhanced by additionof Cu2+, Co2+ and Mn2+ ions, and was reduced in the presenceof DTT, PCMPS, glycylglycine, and DIECA. (Received June 17, 1978; )  相似文献   

14.
Cytochrome f was extracted from leaves of Brassica komatsuna(Brassica Rapa L. var. pervidis Bailey) in an aqueous solutionusing methyl ethyl ketone and was purified by the followingsteps: (i) acetone precipitation, (ii) ammonium sulfate fractionation(0.33–0.7 saturation), (iii) DEAE-cellulose column chromatography,and (iv) Sephadex G-100 column chromatography. Characteristic spectroscopic properties and the midpoint potentialof the cytochrome were essentially identical with those of thecytochrome f from parsley reported by Bendall et al. Molecular weight of the cytochrome determined by gel filtrationwas close to 32,000 and it contained one haem per molecule ofprotein. The ferro-cytochrome was oxidized by potato polyphenol oxidasein the presence of chlorogenic acid. Under light-aerobic conditions, the ferro-cytochrome was rapidlyoxidized by the chlorophyll-protein CP743 from Chenopodium albumin the presence of menadione. Under light-anaerobic conditions,the oxidized cytochrome was reduced at a considerable rate. 1 Cytochrome c6 according to the enzyme nomenclature recommendedby I.U.P.A.C.-I.U.B. (5). (Received November 7, 1974; )  相似文献   

15.
Enolase (2-phospho-D-glycerate hydrolyase, EC 4.2.1.11 [EC] ) activityis differentially induced by anoxia in the flood-tolerant speciesE. phyllopogon (Stev.) Koss and the flood-intolerant speciesE. crus-pavonis (H.B.K.) Schult. To examine the regulation ofenolase at the protein level, we purified the enzyme from bothspecies to near homogeneity and compared their physico-chemicaland catalytic properties. Enolase purified from E. phyllopogonexhibits optimal activity at pH 7.0, a Km of 80 µM for2-PGA, a Q10 of 1.97 and an Ea of 12.3 kcal mol-1. Similarly,enolase from E. crus-pavonis exhibits optimal activity at pH7.0, a Km of 50 µM for 2-PGA, a Q10 of 2.04 and an Eaof 12.9 kcal mol-1. The enzyme from both species is thermostable(100% active after 15 min, 50°C) and is a homodimer of 52.5kDa subunits as resolved by SDS-PAGE and immunoblotting. E.phyllopogon enolase was phosphorylated in vitro using either[  相似文献   

16.
Mitochondria isolated from leaves of Mesembryanthemum crystallinumoxidized malate by both NAD malic enzyme and NAD malate dehydrogenase.Rates of malate oxidation were higher in mitochondria from plantsgrown at 400 mil NaCl in the rooting medium and performing Crassulaceanacid metabolism (CAM) than in mitochondria from plants grownat 20 mM NaCl and exhibiting C3-photosynthetic CO2 fixation.The mitochondria isolated from plants both in the CAM and C3modes were tightly coupled and gave high respiratory control.At optimum pH for malate oxidation (pH 7.0), pyruvate was themajor product in mitochondria from CAM-M. crystallinum, whereasmitochondria from C3-M. crystallinum produced predominantlyoxaloacetate. Both the extracted NAD malic enzyme in the presenceof CoA and the oxidation of malate to pyruvate by the mitochondriafrom plants in the CAM mode had a pH optimum around 7.0 withactivity declining markedly above this pH. The activity of NAD-malicenzyme, expressed on a cytochrome c oxidase activity basis,was much higher in mitochondria from the CAM mode than the C3mode. The results indicate that mitochondria of this speciesare adapted to decarboxylate malate at high rates during CAM. 1Current address: Lehrstuhl für Botanik II, UniversitätWurzburg, Mittlerer Dallenbergweg 64, 8700 Würzburg, WestGermany. 2Current address: KD 120, Chemical Research Division, OntarioHydro, 800 Kipling Avenue, Toronto, Ontario M8Z5S4, Canada. 3Current address: Department of Botany, Washington State University,Pullman, Washington 99164-4230, U.S.A. (Received March 13, 1986; Accepted September 18, 1986)  相似文献   

17.
Light-induced redox-reactions of cytochrome b559 in spinachchloroplasts were investigated. Illumination of chloroplastsinduced photoreduction of cytochrorne b559 Red light (650 nm)was more effective than far-red light (725 nm), indicating thatthe photoreduction is a photosystem II-mediated reaction. Onaddition of DCMU, the photoreduction was eliminated and a photooxidationof cytochrome b559 was observed. The rate of this photooxidationwas faster with photosystem II light than with photo-systemI light. On addition of Mn++ the photooxidation was partly suppressed;far-red light became as effective as red light in inducing photooxidationof cytochrome b599, in the presence of DCMU and Mn++. Ascorbate completely suppressed photooxidation of cytochromeb559 In the presence of ascorbate, however, photooxidation wasobserved in the presence of inhibitors or after inhibitory treatmentsof chloroplasts which affected the oxidizing side of systemII. These inhibitors and inhibitory treatments, but not DCMU,decreased the redoxpotential of cytochrome b559. Reactivationof Hill reaction in Tris-washed chloroplasts by indophenol-ascorbatetreatment was not accompanied by an abolishment of photooxidationof cytochrome b559. A possible mechanism is proposed to account for these reactionsof cytochrome b559 in the photosynthetic electron transportin chloroplasts. (Received April 4, 1972; )  相似文献   

18.
Using butyl-TSK-gel chromatography, we purified NAD-malic enzyme(ME) (EC 1.1.1.39 [EC] ), which is involved in C4 photosynthesis,to electrophoretic homogeneity, from leaves of Amaran-thus tricolor.Molecular weights of the native and SDS-denatured enzyme fromA. tricolor were 490 kDa and 61 kDa, respectively. During assayof the enzyme there was a slow reaction transient in the formof a lag before a steady-state rate was reached. The durationof this lag was inversely proportional to the concentrationof each substrate and the activator, fructose- 1,6-bis-phosphate(FBP). The optimal pH of the reaction fell with decreasing concentrationsof either malate or FBP. High pH prolonged the lag in reaction. Double reciprocal plots of the enzymatic activity as a functionof the concentration of malate yielded straight lines and didnot show any cooperativity for binding of malate. The enzymefrom A. tricolor was not inhibited by either HCO3 orCO2. At different concentrations of malate, the nature of theactivating effect of FBP was compared among the purified enzymesfrom A. tricolor and the C4 monocots Eleusine coracana and Panicumdichotomiflorum. At low levels of malate, FBP markedly stimulatedthe enzyme from each species. In contrast, at saturating levelsof malate, the response of enzymes to increasing concentrationsof FBP was different and depended on the source of enzyme. The immunochemical properties of the enzymes from the threespecies were compared using an enzyme-linked immunoadsorbentassay with antisera raised against the purified enzymes fromthe three species. Different cross-reactivities were observedamong the enzymes from different sources. The N-terminal aminoacid sequences of NAD-MEs from the three species were determinedand some differences were found among the three enzymes. 2Permanent address; Tohoku National Agricultural ExperimentStation, Morioka, 020-01 Japan. 3Permanent address; National Grassland Research Institute, Nishinasuno,Tochigi, 329-27 Japan. (Received December 12, 1988; Accepted February 17, 1989)  相似文献   

19.
Purification and Properties of Soluble Chlorophyllase from Tea Leaf Sprouts   总被引:1,自引:0,他引:1  
Soluble chlorophyllase (chlorophyll-chlorophyllido-hydrolase,EC 3.1.1.14 [EC] ) was purified 650-fold from tea leaf sprouts byammonium sulfate fractionation and gel filtration through SephadexG-200 and Sepharose CL-6B. The purified enzyme showed two bandson polyacrylamide gel electrophoresis and the specific activitywas 2.6 µmol chlorophyll a hydrolyzed min–1 mg–1of protein. The molecular weights determined by Sepharose CL-6Bwere 910,000 and 350,000, indicating high molecular aggregates.The subunit molecular weight estimated by sodium lauryl sulfate-polyacrylamidegel electrophoresis was 38,000. The isoelectric point was 3.9.The optimum pH was 5.5 in acetate buffer and the Km value forchlorophyll a was 10 µM. This enzyme did not require athiol compound nor metal ion such as Mg2+. (Received January 26, 1981; Accepted April 3, 1981)  相似文献   

20.
Cytochrome b561 from Rhodopseudomonas sphaeroides had cytochromec (c2) oxidase activity and a pH optimum at 6.0 for this activity.The activity was affected by the ionic strength of the reactionmixture. The apparent Km and maximal velocity (Vmax) valuesin the absence of addea salts were 14 µM and 120 nmoloxidized per min per mg protein for horse heart cytochrome c.Reduced horse heart cytochrome c was reoxidized in first-orderkinetics by this cytochrome b561. The specific activity was0.7 s–1 per mg protein at 20°C at the concentrationof 30 µMM cytochrome c. Activity was inhibited by KCN and NaN3, but not by antimycin.The addition of a low concentration of KCN to the cytochromeb561 produced a change in the absorption spectrum, evidencethat KCN interacts with the heme moiety of cytochrome b561.Results of this and preceeding studies show that the cytochromeoxidase (cytochrome "o") described earlier (Sasaki et al. 1970)is cytochrome b561. (Received May 16, 1983; Accepted September 8, 1983)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号