首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Regulation of glutamate dehydrogenase by histidine   总被引:1,自引:0,他引:1  
  相似文献   

2.
Choi MM  Huh JW  Yang SJ  Cho EH  Choi SY  Cho SW 《FEBS letters》2005,579(19):4125-4130
When the influence of ADP-ribosylation on the activities of the purified human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) was measured in the presence of 100 microM NAD+ for 60 min, hGDH isozymes were inhibited by up to 75%. If incubations were performed for longer time periods up to 3 h, the inhibition of hGDH isozymes did not increased further. This phenomenon may be related to the reversibility of ADP-ribosylation in mitochondria. ADP-ribosylated hDGH isozymes were reactivated by Mg2+-dependent mitochondrial ADP-ribosylcysteine hydrolase. The stoichiometry between incorporated ADP-ribose and GDH subunits shows a modification of one subunit per catalytically active homohexamer. Since ADP and GTP had no effects on the extent of modification, it would appear that the ADP-ribosylation is unlikely to occur in allosteric sites. It has been proposed that Cys residue may be involved in the ADP-ribosylation of GDH, although identification of the reactive Cys residue has not been reported. To identify the reactive Cys residue involved in the ADP-ribosylation, we performed cassette mutagenesis at three different positions (Cys59, Cys119, and Cys274) using synthetic genes of hGDH isozymes. Among the Cys residues tested, only Cys119 mutants showed a significant reduction in the ADP-ribosylation. These results suggest a possibility that the Cys119 residue has an important role in the regulation of hGDH isozymes by ADP-ribosylation.  相似文献   

3.
Glutamate dehydrogenase is inhibited more by palmitoyl-CoA when the reduced form of triphosphopyridine nucleotide instead of the reduced form of diphosphopyridine nucleotide is the coenzyme. Inhibition is further enhanced by α-ketoglutarate and malate. Thus, for example, in the presence of TPNH plus malate, the amount of palmitoyl-CoA required for 50% inhibition is 10-fold lower (0.03 μm) than previously reported values obtained with reduced diphosphopyridine nucleotide as a coenzyme. Allosteric modifiers such as ATP, GTP, and leucine decrease inhibition of glutamate dehydrogenase by palmitoyl-CoA. Palmitoyl-CoA and ADP are competitive. Thus, the palmitoyl-CoA binding site is apparently in the vicinity of the site of these allosteric modifiers and is probably at the ADP site. The fact that ADP (which has only one site per polypeptide chain) can completely prevent inhibition by palmitoyl-CoA suggests that there is only one kinetically significant palmitoyl-CoA binding site per polypeptide chain. This is consistent with the fact that adding one equivalent of palmitoyl-CoA per polypeptide chain inhibits about 80%. The high affinity of glutamate dehydrogenase for palmitoyl-CoA enables it to successfully compete with other mitochondrial proteins for palmitoyl-CoA.  相似文献   

4.
5.
The photorespiratory nitrogen cycle was initially thought to be a closed cyclic process. If this were true the loss of glutamate, glutamine, serine or glycine to other processes, such as protein synthesis or export from the leaves, would not be possible in a stoichiometric sense. However, recent studies with [15N]-labeled amino acids show that there are alternative sources of nitrogen for photorespiration, indicating that the nitrogen cycle is not a closed cyclic system. In addition recent work with 15NH4Cl and [15N]-glycine and a metabolically competent mitochondria system has shown that glutamate is synthesized in the mitochondria. Hence the glutamate dehydrogenase (GDH, EC 1.4.1.2) in mitochondria could also be active in the reassimilation of NH4. We would like to propose that one function of mitochondrial GDH is to synthesize glutamate from some of the NH4 released by photorespiration and that this glutamate represents a reserve for use in biosynthetic reactions.  相似文献   

6.
Regulation of the dual coenzyme-specific glutamate dehydrogenase (GDH; EC 1.4.1.3) was studied in the anaerobic bacterium Bacteroides fragilis. Cells grown at a low concentration of ammonia had a specific activity for the enzyme 10-fold higher than that for cells grown with excess ammonia. Immunochemical determination with a GDH-specific antiserum showed that the content of immuno-precipitated protein was about 8% of the total protein in the former cells and was 4% in the latter cells. When cells grown on 50 mM-NH4Cl were transferred to a fresh medium containing 0.5 mM-NH4Cl, an increase in the molecular activity of the enzyme occurred, and synthesis of immuno-reactive protein started. Rapid inactivation of the GDH occurred when cells grown on 1 mM-NH4Cl were exposed to 50 mM-NH4Cl. However, the amount of immuno-precipitated protein was not decreased. The inactivation was specifically induced by ammonia and was reversed by transferring the cells to an ammonia-limited medium even in the presence of chloramphenicol. These findings suggest that the synthesis of the GDH is stimulated under low ammonia conditions and that the enzyme activity is controlled by means of a reversible activation/inactivation mechanism which is regulated by ammonia. However, no phosphorylation of GDH was observed before and after exposure of cells to high concentrations of ammonia.  相似文献   

7.
Jadwiga Bryła 《FEBS letters》1983,162(2):244-247
The effect of phosphoenolpyruvate on glutamate dehydrogenase activity was studied in both intact and Triton X-100-treated rabbit renal mitochondria. The intramitochondrial phosphoenolpyruvate content was modulated by application of both 3-MPA, an inhibitor of phosphoenolpyruvate carboxykinase, and BTCA, which inhibits the tricarboxylate-transporting system. The data indicate that: (i) phosphoenolpyruvate is a potent inhibitor of glutamate dehydrogenase activity; and (ii) its inhibitory effect on the enzyme may be abolished by leucine and ADP, activators of glutamate dehydrogenase.  相似文献   

8.
The effects of coenzymes NAD(P) and NAD(P)H on the kinetics of the ox liver glutamate dehydrogenase reaction have been studied. The oxidized coenzymes were shown to activate alpha-ketoglutarate amination at inhibiting concentrations of NADH and NADPH. The reduced coenzymes, NADH and NADPH, inhibit glutamate deamination with both NAD and NADP as coenzymes. The data obtained are discussed in terms of literature data on the mechanisms of the coenzyme effects on the glutamate dehydrogenase activity and are inconsistent with the theory of direct ligand--ligand interactions. It was shown that the peculiarities of the glutamate dehydrogenase kinetics can easily be interpreted in the light of the two state models.  相似文献   

9.
10.
The synthesis of glutamate from α-oxoglutarate and NH4+ by pea seedling mitochondria has been demonstrated under certain defined but non-physiological conditions. Malate acts as a hydrogen donor for the synthesis of glutamate but isocitrate is more effective, whilst succinate, in the presence or absence of ATP, is a poor donor of hydrogen. Glutamate dehydrogenase has been purified from pea mitochondria and from the cytosol. The similarities between the two preparations are interpreted to mean that the soluble glutamate dehydrogenase is released from the mitochondria during isolation. The kinetics of the mitochondrial enzyme and the effect of various metabolites on its activity have been examined. The results are discussed in relation to the proposed role of this enzyme and it is suggested that the ratio NADH-NAD+ may play a role in the control of glutamate metabolism.  相似文献   

11.
The active NAD-dependent glutamate dehydrogenase of wild type yeast cells fractionated by DEAE-Sephacel chromatography was inactivated in vitro by the addition of either the cAMP-dependent or cAMP-independent protein kinases obtained from wild type cells. cAMP-dependent inhibition of glutamate dehydrogenase activity was not observed in the crude extract of bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase. The cAMP-dependent protein kinase of CYR3 mutant cells, which has a high K alpha value for cAMP in the phosphorylation reaction, required a high cAMP concentration for the inactivation of NAD-dependent glutamate dehydrogenase. An increased inactivation of partially purified active NAD-dependent glutamate dehydrogenase (Mr = 450,000) was observed to correlate with increased phosphorylation of a protein subunit (Mr = 100,000) of glutamate dehydrogenase. The phosphorylated protein was labeled by an NADH analog, 5'-p-fluorosulfonyl[14C]benzoyladenosine. Activation and dephosphorylation of inactive NAD-dependent glutamate dehydrogenase fractions were observed in vitro by treatment with bovine alkaline phosphatase or crude yeast cell extracts. These results suggested that the conversion of the active form of NAD-dependent glutamate dehydrogenase to an inactive form is regulated by phosphorylation through cAMP-dependent and cAMP-independent protein kinases.  相似文献   

12.
Root or secondary leaf segments from maize ( Zea mays L. cv. Ganga safed-2) seedlings were incubated with 9-amino acids and two amides separately, each at 5 m M for 24 h, to study their effects on glutamate dehydrogenase (GDH) activity. Most of the compounds tested inhibited the specific activity of NADH-GDH and increased that of NAD+-GDH in the roots in the presence as well as in the absence of ammonium. In the leaves, such effects were recorded only with a few amino acids. Total soluble protein in the root and leaf tissues increased with the supply of most of the amino compounds. The effect of glutamate on enzyme activity and protein was concentration dependent in both tissues. When the enzyme extracts from root or leaf tissues were incubated with some of the amino acids, NADH-GDH declined while NAD+-GDH increased in most cases. The inhibition of NADH-GDH increased with increasing concentration of cysteine from 1 to 5 m M . The experiments demonstrate that most of the amino acids regulated GDH activity, possibly through some physicochemical modulation of the enzyme molecule.  相似文献   

13.
Regulation of glutamate dehydrogenase in Bacillus subtilis.   总被引:5,自引:5,他引:0       下载免费PDF全文
The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression.  相似文献   

14.
15.
16.
The amination of α-ketoglutarate (α-KG) by NADH-glutamate dehydrogenase (GDH) obtained from Sephadex G-75 treated crude extracts from shoots of 5-day-old seedlings was stimulated by the addition of Ca2+. The NADH-GDH purified 161-fold with ammonium sulfate, DEAE-Toyopearl, and Sephadex G-200 was also activated by Ca2+ in the presence of 160 micromolar NADH. However, with 10 micromolar NADH, Ca2+ had no effect on the NADH-GDH activity. The deamination reaction (NAD-GDH) was not influenced by the addition of Ca2+.

About 25% of the NADH-GDH activity was solubilized from purified mitochondria after a simple osmotic shock treatment, whereas the remaining 75% of the activity was associated with the mitochondrial membrane fraction. When the lysed mitochondria, mitochondrial matrix, or mitochondrial membrane fraction was used as the source of NADH-GDH, Ca2+ had little effect on its activity. The mitochondrial fraction contained about 155 nanomoles Ca per milligram of mitochondrial protein, suggesting that the NADH-GDH in the mitochondria is already in an activated form with regard Ca2+. In a simulated in vitro system using concentrations of 6.4 millimolar NAD, 0.21 millimolar NADH, 5 millimolar α-KG, and 5 millimolar glutamate thought to occur in the mitochondria, together with 1 millimolar Ca2+, 10 and 50 millimolar NH4+, and purified enzyme, the equilibrium of GDH was in the direction of glutamate formation.

  相似文献   

17.
18.
Leucine and monomethyl succinate initiate insulin release, and glutamine potentiates leucine-induced insulin release. Alanine enhances and malate inhibits leucine plus glutamine-induced insulin release. The insulinotropic effect of leucine is at least in part secondary to its ability to activate glutamate oxidation by glutamate dehydrogenase (Sener, A., Malaisse-Lagae, F., and Malaisse, W. J. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 5460-5464). The effect of these other amino acids or Krebs cycle intermediates on insulin release also correlates with their effects on glutamate dehydrogenase and their ability to regulate inhibition of this enzyme by alpha-ketoglutarate. For example, glutamine enhances insulin release and islet glutamate dehydrogenase activity only in the presence of leucine. This could be because leucine, especially in the presence of alpha-ketoglutarate, increases the Km of glutamate and converts alpha-ketoglutarate from a noncompetitive to a competitive inhibitor of glutamate. Thus, in the presence of leucine, this enzyme is more responsive to high levels of glutamate and less responsive to inhibition by alpha-ketoglutarate. Malate could decrease and alanine could increase insulin release because malate increases the generation of alpha-ketoglutarate in islet mitochondria via the combined malate dehydrogenase-aspartate aminotransferase reaction, and alanine could decrease the level of alpha-ketoglutarate via the alanine transaminase reaction. Monomethyl succinate alone is as stimulatory of insulin release as leucine alone, and glutamine enhances the action of both. Succinyl coenzyme A, leucine, and GTP are all bound in the same region on glutamate dehydrogenase, where GTP is a potent inhibitor and succinyl coenzyme A and leucine are comparable activators. Thus, the insulinotropic properties of monomethyl succinate could result from it increasing the level of succinyl coenzyme A and decreasing the level of GTP via the succinate thiokinase reaction.  相似文献   

19.
L A Witters  J M McDermott 《Biochemistry》1986,25(22):7216-7220
Because of certain similarities between acetyl-CoA carboxylase (ACC) and tubulin, and the recent demonstration of the ADP-ribosylation of tubulin by cholera toxin, we have investigated a potential role for ADP-ribosylation in the regulation of ACC activity. Incubation of purified rat liver ACC with cholera toxin in the presence of millimolar concentrations of [adenylate-32P]NAD results in a time-dependent incorporation of ADP-ribose into ACC of greater than 2 mol/mol of enzyme subunit, accompanied by a marked inactivation of enzyme activity. This effect is not mimicked by pertussis toxin, ADP-ribose, or ribose 5-phosphate. Incubation of labeled ACC with snake venom phosphodiesterase and alkaline hydrolysis release 32P-products tentatively identified by high-performance liquid chromatography as 5'-[32P]AMP and [32P]ADP-ribose, respectively. These data are consistent with a mono-ADP-ribosylation of ACC catalyzed by cholera toxin. Phosphodiesterase treatment of inactivated ACC partially restores enzyme activity. The effects of ADP-ribosylation of ACC are expressed both as a decrease in the enzyme Vmax and as an increase in the apparent Ka for citrate. These results suggest that ACC might be a substrate for endogenous ADP-ribosyltransferases and that this covalent modification could be an important regulatory mechanism for the modulation of fatty acid synthesis in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号