首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed an astrocyte cell culture system that is attractive for the study of apoE structure and its impact on astrocyte lipoproteins and neuronal function. Primary astrocytes from apoE-/- mice were infected with adenovirus expressing apoE3 or apoE4 and the nascent lipoproteins secreted were characterized. The nascent apoE-containing astrocyte particles were predominantly the size of plasma high density lipoprotein (HDL). ApoE4, in contrast to apoE3, appeared to be distributed in two distinct lipoprotein peaks and the apoE4-containing lipoproteins contained significantly more radiolabeled triglyceride. On electron micrographs the astrocyte particles were both discoidal and spherical in shape with a prevalence of stacked discs in apoE3 particles, but single discs and larger spheres in apoE4 particles. The apoE4 discs were significantly wider than apoE3 discs. These properties of the astrocyte lipoproteins are similar to those obtained from apoE isoform transgenic mice. Astrocyte lipoproteins containing apoE3, but not apoE4, stimulated neurite outgrowth in Neuro-2a cells. These studies suggest that the isoform-specific effects of apoE lipoproteins may involve differences in particle size and composition. Finally we demonstrate the usefulness of this system by expressing a truncated apoE3 (delta202-299) mutant and show preliminary data indicating that a liver X receptor agonist promotes HDL output by the astrocytes without an increase in apoE in the media. This cell culture system is more flexible and allows for more rapid expression of apoE mutants.  相似文献   

2.
We assessed the isoform-specific effects of apolipoprotein (apo) E on the response of Neuro-2a cells to the amyloid beta peptide (Abeta1-42). As determined by the intracellular staining pattern and the release of beta-hexosaminidase into the cytosol, apoE4-transfected cells treated with aggregated Abeta1-42 showed a greater tendency toward lysosomal leakage than neo- or apoE3-transfected cells. Abeta1-42 caused significantly greater cell death and more than 2-fold greater DNA fragmentation in apoE4-secreting than in apoE3-secreting or control cells. H2O2 or staurosporine enhanced cell death and apoptosis in apoE4-transfected cells but not in apoE3-transfected cells. A caspase-9 inhibitor abolished the potentiation of Abeta1-42-induced apoptosis by apoE4. Similar results were obtained with conditioned medium from cells secreting apoE3 or apoE4. Cells preincubated for 4 h with a source of apoE3 or apoE4, followed by removal of apoE from the medium and from the cell surface, still exhibited the isoform-specific response to Abeta1-42, indicating that the potentiation of apoptosis required intracellular apoE, presumably in the endosomes or lysosomes. Studies of phospholipid (dimyristoylphosphatidylcholine) bilayer vesicles encapsulating 5-(and-6)-carboxyfluorescein dye showed that apoE4 remodeled and disrupted the phospholipid vesicles to a greater extent than apoE3 or apoE2. In response to Abeta1-42, vesicles containing apoE4 were disrupted to a greater extent than those containing apoE3. These findings are consistent with apoE4 forming a reactive molecular intermediate that avidly binds phospholipid and may insert into the lysosomal membrane, destabilizing it and causing lysosomal leakage and apoptosis in response to Abeta1-42.  相似文献   

3.
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer disease (AD) and likely contributes to neuropathology through various pathways. Here we report that the intracellular trafficking of apoE4 is impaired in Neuro-2a cells and primary neurons, as shown by measuring fluorescence recovery after photobleaching. In Neuro-2a cells, more apoE4 than apoE3 molecules remained immobilized in the endoplasmic reticulum (ER) and the Golgi apparatus, and the lateral motility of apoE4 was significantly lower in the Golgi apparatus (but not in the ER) than that of apoE3. Likewise, the immobile fraction was larger, and the lateral motility was lower for apoE4 than apoE3 in mouse primary hippocampal neurons. ApoE4 with the R61T mutation, which abolishes apoE4 domain interaction, was less immobilized, and its lateral motility was comparable with that of apoE3. The trafficking impairment of apoE4 was also rescued by disrupting domain interaction with the small-molecule structure correctors GIND25 and PH002. PH002 also rescued apoE4-induced impairments of neurite outgrowth in Neuro-2a cells and dendritic spine development in primary neurons. ApoE4 did not affect trafficking of amyloid precursor protein, another AD-related protein, through the secretory pathway. Thus, domain interaction renders more newly synthesized apoE4 molecules immobile and slows their trafficking along the secretory pathway. Correcting the pathological structure of apoE4 by disrupting domain interaction is a potential therapeutic approach to treat or prevent AD related to apoE4.  相似文献   

4.
Epidemiological studies demonstrate a relationship between statin [3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor] usage and reduced risk of developing Alzheimer's disease. To determine whether statins affect neuronal development, we treated cultured rat hippocampal neurons with pravastatin. After 4-48 h of treatment, pravastatin significantly increased the number of neurites produced by each cell and caused a corresponding increase in levels of the membrane phospholipid phosphatidylcholine. Pravastatin treatment also significantly increased neurite length and branching but did not affect cellular cholesterol levels. Co-incubation with mevalonate, but not cholesterol, abolished the stimulatory effect of pravastatin on neurite outgrowth. Treatment of neurons with isoprenoids also abolished the effect of pravastatin on neurite growth, suggesting that pravastatin may stimulate neuritogenesis by preventing isoprenylation of signaling molecules such as the Rho family of small GTPases. A specific inhibitor of geranylgeranylation, but not farnesylation, mimicked the stimulatory effect of pravastatin on neuritogenesis. Pravastatin treatment significantly decreased levels of membrane-associated RhoA. These data suggest that pravastatin treatment increases neurite outgrowth and may do so via inhibiting the activity of geranylgeranylated proteins such as RhoA.  相似文献   

5.

Background

The apolipoprotein E4 (apoE4) genotype is a major risk factor for developing late-onset Alzheimer’s disease (AD). Inheritance of apoE4 is also associated with impairments in olfactory function in early stages of AD. In this project we examined the effects of the three common isoforms of human apoE (apoE2, apoE3, and apoE4) on neuronal differentiation and neurite outgrowth in explant cultures of mouse olfactory epithelium (OE).

Results

The OE cultures derived from apoE-deficient/knockout (KO) mice have significantly fewer neurons with shorter neurite outgrowth than cultures from wild-type (WT) mice. Treatment of the apoE KO culture with either purified human apoE2 or with human apoE3 significantly increased neurite outgrowth. In contrast, treatment with apoE4 did not have an effect on neurite outgrowth. The differential effects of human apoE isoforms on neurite outgrowth were abolished by blocking the low-density lipoprotein receptor-related protein (LRP) with lactoferrin and receptor-associated protein (RAP).

Conclusion

ApoE2 and apoE3 stimulate neurite outgrowth in OE cultures by interacting with the lipoprotein receptor, LRP. ApoE4, the isoform associated with AD, failed to promote neurite outgrowth, suggesting a potential mechanism whereby apoE4 may lead to olfactory dysfunction in AD patients.  相似文献   

6.
Apolipoprotein E4 (apoE4), the major genetic risk factor for late onset Alzheimer disease, assumes a pathological conformation, intramolecular domain interaction. ApoE4 domain interaction mediates the detrimental effects of apoE4, including decreased mitochondrial cytochrome c oxidase subunit 1 levels, reduced mitochondrial motility, and reduced neurite outgrowth in vitro. Mutant apoE4 (apoE4-R61T) lacks domain interaction, behaves like apoE3, and does not cause detrimental effects. To identify small molecules that inhibit domain interaction (i.e. structure correctors) and reverse the apoE4 detrimental effects, we established a high throughput cell-based FRET primary assay that determines apoE4 domain interaction and secondary cell- and function-based assays. Screening a ChemBridge library with the FRET assay identified CB9032258 (a phthalazinone derivative), which inhibits domain interaction in neuronal cells. In secondary functional assays, CB9032258 restored mitochondrial cytochrome c oxidase subunit 1 levels and rescued impairments of mitochondrial motility and neurite outgrowth in apoE4-expressing neuronal cells. These benefits were apoE4-specific and dose-dependent. Modifying CB9032258 yielded well defined structure-activity relationships and more active compounds with enhanced potencies in the FRET assay (IC(50) of 23 and 116 nm, respectively). These compounds efficiently restored functional activities of apoE4-expressing cells in secondary assays. An EPR binding assay showed that the apoE4 structure correction resulted from direct interaction of a phthalazinone. With these data, a six-feature pharmacophore model was constructed for future drug design. Our results serve as a proof of concept that pharmacological intervention with apoE4 structure correctors negates apoE4 detrimental effects in neuronal cells and could be further developed as an Alzheimer disease therapeutic.  相似文献   

7.
We previously demonstrated that apolipoprotein E4 (apoE4) potentiates lysosomal leakage and apoptosis induced by amyloid beta (Abeta) peptide in cultured Neuro-2a cells and hypothesized that the low pH of lysosomes accentuates the conversion of apoE4 to a molten globule, inducing reactive intermediates capable of destabilizing cellular membranes. Here we report that neutralizing lysosomal pH with bafilomycin or NH4Cl abolished the apoE4 potentiation of Abeta-induced lysosomal leakage and apoptosis in Neuro-2a cells. Consistent with these results, apoE4 at acidic pH bound more avidly to phospholipid vesicles and disrupted them to a greater extent than at pH 7.4. Comparison of "Arctic" mutant Abeta, which forms multimers, and GM6 mutant Abeta, which remains primarily monomeric, showed that aggregation is essential for apoE4 to potentiate Abeta-induced lysosomal leakage and apoptosis. Both apoE4 and Abeta1-42 had to be internalized to exert these effects. Blocking the low density lipoprotein receptor-related protein with small interfering RNA abolished the enhanced effects of apoE4 and Abeta on lysosomes and apoptosis. In cultured Neuro-2a cells, Abeta1-42 increased lysosome formation to a greater extent in apoE3- or apoE4-transfected cells than in Neo-transfected cells, as shown by immunostaining for lysosome-associated membrane protein 1. Similarly, in transgenic mice expressing apoE and amyloid precursor protein, hippocampal neurons displayed increased numbers of lysosomes. Thus, apoE4 and Abeta1-42 may work in concert in neurons to increase lysosome formation while increasing the susceptibility of lysosomal membranes to disruption, release of lysosomal enzymes into the cytosol, and neuronal degeneration.  相似文献   

8.
9.
Endogenous opioid peptides and opiate drugs are known to affect the development of the nervous system. beta-Casomorphins (beta-CMs) belong to a family of exogenous opioid peptides derived from the milk protein beta-casein by proteolytic fragmentation. We investigated the effects of various fragments and analogues of beta-CM on neurite outgrowth in Neuro-2a mouse neuroblastoma cells. The fragments beta-CM-5 to -9 and beta-CM-5 amide stimulated neurite outgrowth. Fragments shorter than beta-CM-5 (beta-CM-3, -4, and beta-CM-4 amide) and longer than beta-CM-9 (beta-CM-13 and -21) had no effects. The activity of beta-CMs to promote neurite outgrowth does not correlate with their opioid activity in guinea-pig ileum. The effect of the most potent fragment, beta-CM-5, was prevented by the micro-opioid receptor-selective antagonist D-Phe-Cys(2)-Tyr(3)-D-Trp-Orn(5)-Thr(6)-Pen(7)-Thr(8)-NH(2) (CTOP), or by pretreatment with pertussis toxin. These results suggest that the stimulatory effects of beta-CMs on neurite outgrowth were mediated through G protein-coupled micro-opioid receptors.  相似文献   

10.
Neuritic extension is the resultant of two vectorial processes: outgrowth and retraction. Whereas myosin IIB is required for neurite outgrowth, retraction is driven by a motor whose identity has remained unknown until now. Preformed neurites in mouse Neuro-2A neuroblastoma cells undergo immediate retraction when exposed to isoform-specific antisense oligonucleotides that suppress myosin IIB expression, ruling out myosin IIB as the retraction motor. When cells were preincubated with antisense oligonucleotides targeting myosin IIA, simultaneous or subsequent addition of myosin IIB antisense oligonucleotides did not elicit neurite retraction, both outgrowth and retraction being curtailed. Even during simultaneous application of antisense oligonucleotides against both myosin isoforms, lamellipodial spreading continued despite the complete inhibition of neurite extension, indicating an uncoupling of lamellipodial dynamics from movement of the neurite. Significantly, lysophosphatidate- or thrombin-induced neurite retraction was blocked not only by the Rho-kinase inhibitor Y27632 but also by antisense oligonucleotides targeting myosin IIA. Control oligonucleotides or antisense oligonucleotides targeting myosin IIB had no effect. In contrast, Y27632 did not inhibit outgrowth, a myosin IIB-dependent process. We conclude that the conventional myosin motor, myosin IIA, drives neurite retraction.  相似文献   

11.
Previous studies suggest that during nerve regeneration apoE acts as a lipid transport protein that assists in the rapid initial extension of axons and then in their myelination. To determine whether apoE and/or apoE-containing lipoproteins can modulate axon growth, we assessed their effect on the out-growth of neurites from neurons in mixed cultures of fetal rabbit dorsal root ganglion cells in vitro. Incubation with beta-very low density lipoprotein (beta-VLDL) particles, which are rich in apoE and cholesterol, increased neurite outgrowth and branching. Unesterified cholesterol added to the cultures had a similar, but less pronounced, effect. These data suggest that cholesterol might be the component responsible for the enhanced neurite growth. In contrast, purified, lipid-free apoE added to the cultures reduced neurite branching. Neurite branching was also reduced when purified apoE was added along with beta-VLDL or cholesterol; however, the striking finding was that under these conditions the neurites extended farther from the neuronal cell body. Dorsal root ganglion cells were examined for the presence of receptors for native and apoE-enriched beta-VLDL. Immunocytochemistry, ligand blots, 45Ca2+ blots, and studies of the interaction of the cells with fluorescent lipoproteins provided evidence of two types of receptors for apoE-containing lipoproteins on neurons: the low density lipoprotein (LDL) receptor, which binds native beta-VLDL, and the LDL receptor-related protein, which binds apoE-enriched beta-VLDL. These findings indicate that apoE may play two complementary roles in neurite outgrowth. When complexed with lipoproteins, apoE stimulates neurite growth by the receptor-mediated delivery of cholesterol and perhaps other components necessary for neurite outgrowth. When apoE as a free protein is added together with apoE-containing lipoproteins, apoE decreases neurite branching and promotes neurite extension away from the cell body. These actions, which would be complementary in promoting target-directed nerve growth in vivo, provide the first direct evidence that apoE and apoE-containing lipoproteins can modulate the outgrowth of neuronal processes.  相似文献   

12.
Polarized membrane traffic to different domains of the neuron is well documented, and is required for both establishment and maintenance of neuronal polarity. Some soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, particularly syntaxin 12/13 and TI-VAMP/VAMP7, have known roles in the neuron. We report here that the brain-enriched SNARE syntaxin 16 (Syn 16) is specifically enriched in neuronal dendrites and found at Golgi outposts, thus confirming that Golgi outposts are endowed with a trans-Golgi network (TGN) component. Over-expression of wild type syntaxin 16 moderately stimulates, whereas that of an N-terminal deletion mutant (Syn 16-DeltaNt) inhibits, neurite outgrowth in both mouse Neuro-2a cells and primary cortical neurons. Consistent with an inhibited neurite growth, cells over-expressing Syn 16-DeltaNt have diminished betaIII-tubulin and F-actin labeling. RNA interference-mediated silencing of syntaxin 16 in primary cortical neurons significantly retards neurite outgrowth. Syntaxin 16 may thus play a role in neurite outgrowth and perhaps other specific dendritic anterograde/retrograde traffic.  相似文献   

13.
Apolipoprotein (apo) E4 is a major risk factor for Alzheimer disease. Although the mechanisms remain to be determined, the detrimental effects of apoE4 in neurobiology must be based on its unique structural and biophysical properties. One such property is domain interaction mediated by a salt bridge between Arg-61 in the N-terminal domain and Glu-255 in the C-terminal domain of apoE4. This interaction, which does not occur in apoE3 or apoE2, causes apoE4 to bind preferentially to certain lipoprotein particles in vitro and in vivo. Here we used fluorescence resonance energy transfer (FRET) to determine whether apoE4 domain interaction occurs in living neuronal cells. Neuro-2a cells were transfected with constructs encoding apoE3 or apoE4 in which yellow fluorescent protein (YFP) was fused to the N terminus, and cyan fluorescent protein (CFP) was fused to the C terminus. To generate a FRET signal that can be detected by spectrum confocal microscopy, the labeled N and C termini must be in close proximity (<100 A). FRET signals occurred in cells transfected with YFP-apoE4-CFP but not in those transfected with YFP-apoE3-CFP, suggesting that the N and C termini of apoE4 are in close proximity in living cells and that those of apoE3 are not. FRET signals did not occur in cells cotransfected with YFP-apoE4 and apoE4-CFP, suggesting that the FRET in YFP-apoE4-CFP-transfected cells was intramolecular. Mutation of Arg-61 to Thr or Glu-255 to Ala in apoE4, which disrupts domain interaction, abolished FRET in Neuro-2a cells, strongly suggesting that the FRET in YFP-apoE4-CFP cells was caused by domain interaction. ApoE4-producing cells secreted less phospholipid than apoE3-producing cells, but after disruption of domain interaction in apoE4, phospholipid secretion increased to the levels seen with apoE3, suggesting that domain interaction decreases the phospholipid-binding capacity of apoE4. Thus, apoE4 domain interaction occurs in living neuronal cells and may be a molecular basis for apoE4-related neurodegeneration.  相似文献   

14.
Composition of central nervous system lipoproteins affects the metabolism of lipoprotein constituents within the brain. The epsilon4 allele of apolipoprotein E (apoE) is a risk factor for Alzheimer's disease via an unknown mechanism(s). As glia are the primary central nervous system cell type that synthesize apoE, we characterized lipoproteins secreted by astrocytes from wild type (WT), apoE (-/-), and apoE transgenic mice expressing human apoE3 or apoE4 in a mouse apoE (-/-) background. Nondenaturing size exclusion chromatography demonstrates that WT, apoE3, and apoE4 astrocytes secrete particles the size of plasma high density lipoprotein (HDL) composed of phospholipid, free cholesterol, and protein, primarily apoE and apoJ. However, the lipid:apoE ratio of particles containing human apoE is significantly lower than WT. ApoE localizes across HDL-like particle sizes. ApoJ localizes to the smallest HDL-like particles. ApoE (-/-) astrocytes secrete little phospholipid or free cholesterol despite comparable apoJ expression, suggesting that apoE is required for normal secretion of astrocyte lipoproteins. Further, particles were not detected in apoE (-/-) samples by electron microscopy. Nondenaturing immunoprecipitation experiments indicate that apoE and apoJ reside predominantly on distinct particles. These studies suggest that apoE expression influences the unique structure of astrocyte lipoproteins, a process further modified by apoE species.  相似文献   

15.
16.
Apolipoprotein E (apoE) is a ligand for members of the low density lipoprotein (LDL) receptor family, receptors highly expressed in neurons. A study of one of the mechanisms by which apoE might affect neuronal cell metabolism is reported herein. ApoE can induce Akt/protein kinase B phosphorylation in Neuro-2a via two different pathways. Both pathways are mediated by phosphatidylinositol 3-kinase and cAMP-dependent protein kinase. The first pathway is stimulated by apoE3 and E4, but not by E2, after a 1-h incubation. The process requires the binding of apoE to the heparan sulfate proteoglycan/LDL receptor-related protein complex. The second pathway is activated after a 2-h incubation of the cells, in another isoform-dependent manner (E2 = E3 dbl greater-than sign E4) and is mediated by calcium. Our results suggest that apoE might affect cell metabolism and survival in neurons in an isoform-specific manner by inducing novel signaling pathways.  相似文献   

17.
The study of the signaling pathways regulating neurite outgrowth in culture is important because of their potential role in neuronal differentiation in vivo. We have previously shown that the G alpha(o/i)-coupled CB1 cannabinoid receptor (CB1R) activates Rap1 to induce neurite outgrowth. G alpha(o/i) also activates the Src-Stat3 pathway. Here, we studied the relationship between the G alpha(o/i)-Rap1 and Src-Stat3 pathways and the role of these signaling pathways in CB1R-mediated neurite outgrowth in Neuro-2A cells. The CB1 agonist HU-210 induced pertussis toxin-sensitive Src and Stat3 phosphorylation. Dominant negative (DN) mutants of Src and Stat3 blocked CB1R-induced neurite outgrowth. Constitutively active Rap 1B and Ral-activated Src and CB1R-induced Src phosphorylation was inhibited by Rap1-DN and Ral-DN, indicating that both Rap1 and Ral mediate downstream signaling from G alpha(o/i) for Src activation. Rap1-activated Ral and Ral-DN blocked Rap-induced Src phosphorylation. G alpha(o)-induced Stat3 activation was blocked by Ral-DN, whereas v-Src-induced Stat3 activation was not inhibited by Ral-DN, indicating that the CB1R, through G alpha(o), mediates the sequential activation of Rap1 to Ral to Src to Stat3 in Neuro-2A cells. Downstream of Src, the CB1R also activated Rac1 and JNK, which enhanced CBR1-mediated Stat3 activation. Rac-DN blocked CB1R-induced activation of JNK. Pharmacological inhibition of JNK blocked Src and CB1R activation of Stat3, indicating that Rac and JNK are also involved in CB1R-mediated neurite outgrowth. Overall, this study demonstrated that G alpha(o/i)-coupled CB1R triggers neurite outgrowth in Neuro-2A through the activation of a signaling network containing two pathways that bifurcate at Src and converge at Stat3.  相似文献   

18.
Endogenous opioid peptides and opiate drugs are known to affect the development of the nervous system. β-Casomorphins (β-CMs) belong to a family of exogenous opioid peptides derived from the milk protein β-casein by proteolytic fragmentation. We investigated the effects of various fragments and analogues of β-CM on neurite outgrowth in Neuro-2a mouse neuroblastoma cells. The fragments β-CM-5 to -9 and β-CM-5 amide stimulated neurite outgrowth. Fragments shorter than β-CM-5 (β-CM-3, -4, and β-CM-4 amide) and longer than β-CM-9 (β-CM-13 and -21) had no effects. The activity of β-CMs to promote neurite outgrowth does not correlate with their opioid activity in guinea-pig ileum. The effect of the most potent fragment, β-CM-5, was prevented by the μ-opioid receptor-selectiveantagonist D-Phe-Cys2-Tyr3-D-Trp-Orn5-Thr6-Pen7- Thr8-NH2 (CTOP), or by pretreatment with pertussis toxin. These results suggest that the stimulatory effects of β-CMs on neurite outgrowth were mediated through G protein-coupled μ-opioid receptors.  相似文献   

19.
We have previously shown that c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. Herein, using PC12 cells induced to differentiate by nerve growth factor, the genomic effect of c-Fos in initiating neurite outgrowth is shown as distinct from its nongenomic effect of activating phospholipid synthesis and sustaining neurite elongation. Blocking c-Fos expression inhibited differentiation, phospholipid synthesis activation, and neuritogenesis. In cells primed to grow, blocking c-Fos expression determined neurite retraction. However, transfected cells expressing c-Fos or c-Fos deletion mutants with capacity to activate phospholipid synthesis sustain neurite outgrowth and elongation in the absence of nerve growth factor. Results disclose a dual function of c-Fos: it first releases the genomic program for differentiation and then associates to the endoplasmic reticulum and activates phospholipid synthesis. Because phospholipids are key membrane components, we hypothesize this latter phenomenon as crucial to support membrane genesis demands required for cell growth and neurite elongation.  相似文献   

20.
The G(alpha)o/i-coupled CB1 cannabionoid receptor induces neurite outgrowth in Neuro-2A cells. The mechanisms of signaling through G(alpha)o/i to induce neurite outgrowth were studied. The expression of G(alpha)o/i reduces the stability of its direct interactor protein, Rap1GAPII, by targeting it for ubiquitination and proteasomal degradation. This results in the activation of Rap1. G(alpha)o/i-induced activation of endogenous Rap1 in Neuro-2A cells is blocked by the proteasomal inhibitor lactacystin. G(alpha)o/i stimulates neurite outgrowth that is blocked by the expression of dominant negative Rap1. Expression of Rap1GAPII also blocks the G(alpha)o/i-induced neurite outgrowth and treatment with proteasomal inhibitors potentiates this inhibition. The endogenous G(alpha)o/i-coupled cannabinoid (CB1) receptor in Neuro-2A cells stimulates the degradation of Rap1GAPII; activation of Rap1 and treatment with pertussis toxin or lactacystin blocks these effects. The CB1 receptor-stimulated neurite outgrowth is blocked by treatment with pertussis toxin, small interfering RNA for Rap, lactacystin, and expression of Rap1GAPII. Thus, the G(alpha)o/i-coupled cannabinoid receptor, by regulating the proteasomal degradation of Rap1GAPII, activates Rap1 to induce neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号