共查询到20条相似文献,搜索用时 15 毫秒
1.
Hillman JD 《Antonie van Leeuwenhoek》2002,82(1-4):361-366
There are many examples of positive and negative interactions between different species of bacteria inhabiting the same ecosystem. This observation provides the basis for a novel approach to preventing microbial diseases called replacement therapy. In this approach, a harmless effector strain is permanently implanted in the host's microflora. Once established, the presence of the effector strain prevents the colonization or outgrowth of a particular pathogen. In the case of dental caries, replacement therapy has involved construction of an effector strain called BCS3-L1, which was derived from a clinical Streptococcus mutans isolate. Recombinant DNA technology was used to delete the gene encoding lactate dehydrogenase in BCS3-L1 making it entirely deficient in lactic acid production. This effector strain was also designed to produce elevated amounts of a novel peptide antibiotic called mutacin 1140 that gives it a strong selective advantage over most other strains of S. mutans. In laboratory and rodent model studies, BCS3-L1 was found to be genetically stable and to produce no apparent deleterious side effects during prolonged colonization. BCS3-L1 was significantly less cariogenic than wild-type S. mutansin gnotobiotic rats, and it did not contribute at all to the cariogenic potential of the indigenous flora of conventional Sprague-Dawley rats. And, its strong colonization properties indicated that a single application of the BCS3-L1 effector strain to human subjects should result in its permanent implantation and displacement over time of indigenous, disease-causing S. mutans strains. Thus, BCS3-L1 replacement therapy for the prevention of dental caries is an example of biofilm engineering that offers the potential for a highly efficient, cost effective augmentation of conventional prevention strategies. It is hoped that the eventual success of replacement therapy for the prevention of dental caries will stimulate the use of this approach in the prevention of other bacterial diseases. 相似文献
2.
3.
Ito K Ito S Shimamura T Weyand S Kawarasaki Y Misaka T Abe K Kobayashi T Cameron AD Iwata S 《Journal of molecular biology》2011,408(2):177-186
Glucansucrase (GSase) from Streptococcus mutans is an essential agent in dental caries pathogenesis. Here, we report the crystal structure of S. mutans glycosyltransferase (GTF-SI), which synthesizes soluble and insoluble glucans and is a glycoside hydrolase (GH) family 70 GSase in the free enzyme form and in complex with acarbose and maltose. Resolution of the GTF-SI structure confirmed that the domain order of GTF-SI is circularly permuted as compared to that of GH family 13 α-amylases. As a result, domains A, B and IV of GTF-SI are each composed of two separate polypeptide chains. Structural comparison of GTF-SI and amylosucrase, which is closely related to GH family 13 amylases, indicated that the two enzymes share a similar transglycosylation mechanism via a glycosyl-enzyme intermediate in subsite − 1. On the other hand, novel structural features were revealed in subsites + 1 and + 2 of GTF-SI. Trp517 provided the platform for glycosyl acceptor binding, while Tyr430, Asn481 and Ser589, which are conserved in family 70 enzymes but not in family 13 enzymes, comprised subsite + 1. Based on the structure of GTF-SI and amino acid comparison of GTF-SI, GTF-I and GTF-S, Asp593 in GTF-SI appeared to be the most critical point for acceptor sugar orientation, influencing the transglycosylation specificity of GSases, that is, whether they produced insoluble glucan with α(1-3) glycosidic linkages or soluble glucan with α(1-6) linkages. The structural information derived from the current study should be extremely useful in the design of novel inhibitors that prevent the biofilm formation by GTF-SI. 相似文献
4.
Thirty-four female rats (18 days old) were infected with Streptococcus mutans MT8148R (serotype c) or 6715 (g). Diets containing different proportions of sucrose were used to prepare the dams which harbored various levels of S. mutans in their oral cavity. Around 66 days of age, the female rats were bred and 34 dams subsequently bore 322 offspring. The dams were killed upon weaning (20 days of age) of their respective litters. There were positive correlations between the recovery of inoculated S. mutans and the caries incidence in the dams. Transmission of S. mutans from a dam to her offspring was studied in 10-, 15-, 20-, 27-, 34-, 41-, 48-, and 55-day-old rats by evaluating the recover of S. mutans from the offspring. Positive correlation between the magnitudes of recovered S. mutans MT8148R from dams and their offspring was found in all ages of young rats examined. Furthermore, caries incidence in young rats was found to be positively correlated with the recovery of both strains of S. mutans as well as with incidence of caries in their respective dams. 相似文献
5.
6.
Streptococcus mutans is implicated in coronal and dental root decay, and in endocarditis. Comparative study of the amino acid sequence of S. mutans 47 kDa wall-associated protein A (WapA) revealed a collagen-binding domain (CBD) at the N-terminal region. Recombinant AgA (WapA truncated at the carboxyterminal end) was isolated, biotin-labeled, and analyzed by Solid Phase Binding Assay. The results showed that biotin-labeled AgA bound significantly and in a dose-dependent manner to immobilized collagen type I, and to a lesser extent to fibronectin, but not to collagen type IV or laminin. Binding of biotin-labeled S. mutans cells to collagen-coated surfaces was significantly inhibited by antibody to WapA or AgA (P<0.001). The results obtained confirmed the collagen-binding activity of CBD in AgA and WapA, and suggested that WapA may be used, not only as a vaccine against coronal and dental root caries, but also against S. mutans-mediated endocarditis. 相似文献
7.
Streptococcus mutans, an assessment of its physiological potential in relation to dental caries. 总被引:1,自引:0,他引:1
J D Ruby M Goldner J A Hargreaves 《Revue canadienne de biologie / éditée par l'Université de Montréal》1978,37(4):273-289
Streptococcus mutans converts low levels of sucrose to lactic acid, but at high levels favours synthesis of glucans for plaque accumulation. Thus, the continued exposure to sucrose fluxes would select microorganisms in the oral cavity (S. mutans being a prototype) with highly specialized adaptation and potential dental caries activity. The bacteria that have evolved physiological systems to function efficiently under these conditions are the lactic acid bacteria. These organisms survive in environments where carbohydrate availability is constantly changing. High tolerances to acidic environments may be an important determinant in establishing the ecology of the carious lesion. Also, the intercellular polysaccharide storgae (glycogenamylopectin) and extracellular polymer reserves (levan and soluble glucan) are important during carbohydrate depletion. Further, the formation of insoluble glucans is a prerequisite for the caries process on smooth surfaces of teeth through plaque development. These conditions could result in an increase in S. mutans and cariogenic microorganisms. As a result, this process may be best understood as a manifestation of an amphibiotic shift. 相似文献
8.
The human oral microbial biota represents a highly diverse biofilm. Twenty-five species of oral streptococci inhabit the human oral cavity and represent about 20 % of the total oral bacteria. Taxonomy of these bacteria is complex and remains provisional. Oral streptococci encompass friends and foes bacteria. Each species has developed specific properties for colonizing the different oral sites subjected to constantly changing conditions, for competing against competitors, and for resisting external agressions (host immune system, physico-chemical shocks, and mechanical frictions). Imbalance in the indigenous microbial biota generates oral diseases, and under proper conditions, commensal streptococci can switch to opportunistic pathogens that initiate disease in and damage to the host. The group of "mutans streptococci" was described as the most important bacteria related to the formation of dental caries. Streptococcus mutans, although naturally present among the human oral microbiota, is the microbial species most strongly associated with carious lesions. This minireview describes the oral streptococci ecology and their biofilm life style by focusing on the mutans group, mainly S. mutans. Virulence traits, interactions in the biofilm, and influence of S. mutans in dental caries etiology are discussed. 相似文献
9.
Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans, implicated in dental caries 总被引:38,自引:5,他引:38
The complete nucleotide sequence of the gene for a cell-surface protein antigen (PAc) of Streptococcus mutans MT8148 (serotype c) was determined. The pac gene consisted of 4695 bp and coded for a 170773D protein. The pac gene product contained a putative 38 amino acid signal peptide, resulting in a 166817D mature protein. A potential promoter sequence and a putative Shine-Dalgarno sequence preceded the open reading frame. Two internal repeating amino acid sequences were present in the PAc. One repeating region located in the N-terminal region was rich in alanine, and the other located in the central region was rich in proline. Southern blot analysis under the less stringent condition (allowing up to 35% base mismatch) revealed that the probe covering the proline-rich region hybridized to DNA preparations from strains of Streptococcus cricetus, Streptococcus sobrinus and Streptococcus downei as well as Streptococcus mutans. 相似文献
10.
Ramiro M. Murata Luciana S. Branco-de-Almeida Eliane M. Franco Regiane Yatsuda Marcelo H. dos Santos Severino M. de Alencar 《Biofouling》2013,29(7):865-872
7-Epiclusianone (7-epi), a novel naturally occurring compound isolated from Rheedia brasiliensis, effectively inhibits the synthesis of exopolymers and biofilm formation by Streptococcus mutans. In the present study, the ability of 7-epi, alone or in combination with fluoride (F), to disrupt biofilm development and pathogenicity of S. mutans in vivo was examined using a rodent model of dental caries. Treatment (twice-daily, 60s exposure) with 7-epi, alone or in combination with 125 ppm F, resulted in biofilms with less biomass and fewer insoluble glucans than did those treated with vehicle-control, and they also displayed significant cariostatic effects in vivo (p < 0.05). The combination 7-epi + 125 ppm F was as effective as 250 ppm F (positive-control) in reducing the development of both smooth- and sulcal-caries. No histopathological alterations were observed in the animals after the experimental period. The data show that 7-epiclusianone is a novel and effective antibiofilm/anticaries agent, which may enhance the cariostatic properties of fluoride. 相似文献
11.
Murata RM Branco-de-Almeida LS Franco EM Yatsuda R dos Santos MH de Alencar SM Koo H Rosalen PL 《Biofouling》2010,26(7):865-872
7-Epiclusianone (7-epi), a novel naturally occurring compound isolated from Rheedia brasiliensis, effectively inhibits the synthesis of exopolymers and biofilm formation by Streptococcus mutans. In the present study, the ability of 7-epi, alone or in combination with fluoride (F), to disrupt biofilm development and pathogenicity of S. mutans in vivo was examined using a rodent model of dental caries. Treatment (twice-daily, 60s exposure) with 7-epi, alone or in combination with 125 ppm F, resulted in biofilms with less biomass and fewer insoluble glucans than did those treated with vehicle-control, and they also displayed significant cariostatic effects in vivo (p < 0.05). The combination 7-epi + 125 ppm F was as effective as 250 ppm F (positive-control) in reducing the development of both smooth- and sulcal-caries. No histopathological alterations were observed in the animals after the experimental period. The data show that 7-epiclusianone is a novel and effective antibiofilm/anticaries agent, which may enhance the cariostatic properties of fluoride. 相似文献
12.
Antibody responses to antigens of Streptococcus mutans in monkeys (Macaca fascicularis) immunized against dental caries 总被引:7,自引:0,他引:7
Immunization of rabbits or monkeys with walls prepared from Streptococcus mutans by a procedure including extraction with SDS at room-temperature induced antibodies to three antigens (A, B and C) detectable by crossed immunoelectrophoresis. Antigens A and B have previously been characterized as proteins of molecular weight 29 000 and 190 000, respectively. Antigen C was characterized as having a molecular weight of 70 000 and was purified by immunosorbent affinity chromatography and hydrophobic interaction chromatography. Another wall protein, antigen D, of molecular weight 13 000, was extracted from walls with Triton X-100. Immunization of monkeys with walls prepared from cultures of S. mutans grown at a high (D = 0.5 h-1) or low (D = 0.05 h-1) dilution rate in a chemostat showed that only the latter induced protection against dental caries. There was a positive correlation between levels of antibody to antigens A and C and induction of protection and a negative correlation between protection and the level of antibody to antigen B. No antibody to antigen D was detected in protected monkeys and an experiment in which monkeys were immunized with pure antigen D confirmed that it does not induce protection. 相似文献
13.
Expression of Streptococcus mutans wall-associated protein A gene in Chinese hamster ovary cells: prospect for a dental caries DNA vaccine. 总被引:1,自引:0,他引:1
The Streptococcus mutans strain GS-5 wall-associated protein A (Wap-A) is a precursor to the extracellular antigen A (AgA), a recognized candidate dental caries vaccine. The full-length wapA gene (wapA-E) and a C-terminal truncated version (wapA-G) encoding the AgA were cloned into the mammalian expression vector pcDNA 3.1/V5/His-TOPO. The resulting constructs were propagated in the Escherichia coli Top10. To investigate the expression of the S. mutans genes in mammalian cells, the above constructs were used to transfect Chinese hamster ovary (CHO) cells in the presence of the cationic lipid pfx-8. Transient expression of the wapA-E and wapA-G genes was observed at 24 h post-transfection, as shown by Western immunoblot analysis using a rabbit antiserum to S. mutans cell wall. Immunochemical staining of the transfected CHO cells showed expression of WapA mainly in the cells and budding vesicles, whereas AgA was found mainly in the transfected cells and extracellular medium. The expression of S. mutans proteins in CHO cells, in either vesicles or soluble form, suggested an antibody response to the above DNA constructs. Work is under way to test the efficacy of these as DNA vaccines against S. mutans. 相似文献
14.
Krüger C Hultberg A Marcotte H Hermans P Bezemer S Frenken LG Hammarström L 《Applied microbiology and biotechnology》2006,72(4):732-737
Streptococcus mutans is the main cause of dental caries. We evaluated the therapeutic effect of variable regions of a llama heavy chain antibody fragments directed against S. mutans named S36-VHH (S for Streptococcus) alone or fused with glucose oxidase (GOx) from Aspergillus niger. Western blot analysis and ELISA revealed binding of the S36-VHH to the streptococcal antigen I/II adhesin molecule of S. mutans serotype C. In a rat-desalivated caries model, daily administration of S36-VHH significantly reduced the development of smooth surface caries. No additional therapeutic effect of GOx was observed. Our results suggest that llama VHH antibodies may be a potential benefit as prophylaxis against dental caries. 相似文献
15.
Lanfen Li Jie Nan Dan Li Erik Brostromer Zixi Wang Cong Liu Qiaoming Hou Xuexin Fan Zhaoyang Ye Xiao-Dong Su 《Journal of structural and functional genomics》2014,15(3):91-99
Gram-positive bacterium Streptococcus mutans is the primary causative agent of human dental caries. To better understand this pathogen at the atomic structure level and to establish potential drug and vaccine targets, we have carried out structural genomics research since 2005. To achieve the goal, we have developed various in-house automation systems including novel high-throughput crystallization equipment and methods, based on which a large-scale, high-efficiency and low-cost platform has been establish in our laboratory. From a total of 1,963 annotated open reading frames, 1,391 non-membrane targets were selected prioritized by protein sequence similarities to unknown structures, and clustered by restriction sites to allow for cost-effective high-throughput conventional cloning. Selected proteins were over-expressed in different strains of Escherichia coli. Clones expressed soluble proteins were selected, expanded, and expressed proteins were purified and subjected to crystallization trials. Finally, protein crystals were subjected to X-ray analysis and structures were determined by crystallographic methods. Using the previously established procedures, we have so far obtained more than 200 kinds of protein crystals and 100 kinds of crystal structures involved in different biological pathways. In this paper we demonstrate and review a possibility of performing structural genomics studies at moderate laboratory scale. Furthermore, the techniques and methods developed in our study can be widely applied to conventional structural biology research practice. 相似文献
16.
Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm 总被引:2,自引:0,他引:2 下载免费PDF全文
The human mucosal surface is colonized by the indigenous microflora, which normally maintains an ecological balance among different species. Certain environmental or biological factors, however, may trigger disruption of this balance, leading to microbial diseases. In this study, we used two oral bacterial species, Streptococcus mutans and Streptococcus sanguinis (formerly S. sanguis), as a model to probe the possible mechanisms of competition/coexistence between different species which occupy the same ecological niche. We show that the two species engage in a multitude of antagonistic interactions temporally and spatially; occupation of a niche by one species precludes colonization by the other, while simultaneous colonization by both species results in coexistence. Environmental conditions, such as cell density, nutritional availability, and pH, play important roles in determining the outcome of these interactions. Genetic and biochemical analyses reveal that these interspecies interactions are possibly mediated through a well-regulated production of chemicals, such as bacteriocins (produced by S. mutans) and hydrogen peroxide (produced by S. sanguinis). Consistent with the phenotypic characteristics, production of bacteriocins and H2O2 are regulated by environmental conditions, as well as by juxtaposition of the two species. These sophisticated interspecies interactions could play an essential part in balancing competition/coexistence within multispecies microbial communities. 相似文献
17.
W J Loesche 《Microbiological reviews》1986,50(4):353-380
18.
《Peptides》2014
Dental caries is a common oral bacterial infectious disease. Its prevention and treatment requires control of the causative pathogens within dental plaque, especially Streptococcus mutans (S. mutans). Antimicrobial peptides (AMPs), one of the promising substitutes for conventional antibiotics, have been widely tested and used for controlling bacterial infections. The present study focuses on evaluating the potential of the novel AMPs cyclic bactenecin and its derivatives against bacteria associated with dental caries. The results indicate that Bac8c displayed highest activity against the bacteria tested, whereas both cyclic and linear bactenecin had weak antimicrobial activity. The cytotoxicity assay showed that Bac8c did not cause detectable toxicity at concentrations of 32–128 μg/ml for 5 min or 32–64 μg/ml for 60 min. S. mutans and Lactobacillus fermenti treated with Bac8c showed variable effects on bacterial structure via scanning electron microscopy and transmission electron microscopy. There appeared to be a large amount of extracellular debris and obvious holes on the cell surface, as well as loss of cell wall and nucleoid condensation. The BioFlux system was employed to generate S. mutans biofilms under a controlled flow, which more closely resemble the formation process of natural biofilms. Bac8c remarkably reduced the viability of cells in biofilms formed in the BioFlux system. This phenomenon was further analyzed and verified by real-time PCR results of a significant suppression of the genes involved in S. mutans biofilm formation. Taken together, this study suggests that Bac8c has a potential clinical application in preventing and treating dental caries. 相似文献
19.
目的比较维吾尔族高龋和无龋儿童变链菌临床分离株表面蛋白V区遗传多态性与其合成水不溶性葡聚糖的关系。方法选取课题组前期实验所得的维吾尔族高龋儿童合成水不溶性葡聚糖能力较强的变形链球菌临床株18株和无龋儿童合成水不溶性葡聚糖能力较弱临床株12株。提取全菌DNA,经PCR扩增其表面蛋白可变区V区编码基因SrV~+后,利用限制性内切酶DdeⅠ进行限制性片段长度多态性分析。结果经DdeⅠ酶切后,高产糖组变链菌出现了4种基因型,低产糖组出现了3种基因型。这几种基因型在不同产糖组中的分布不同(P0.05)。结论维吾尔族不同龋敏感儿童变形链球菌临床分离株SrV~+基因的遗传多态性可能是其合成水不溶性葡聚糖能力出现差异的因素之一。 相似文献
20.
口腔生物被膜是由数百种微生物构成的复杂微生物群体。变形链球菌作为其中的重要一员,被认为是引起龋病的主要病原菌。变形链球菌在牙齿表面以生物被膜形式生长的能力和它产酸耐酸的特点赋予其致龋性。不同的变形链球菌菌株之间保留了多样的次级代谢形式,这是与宿主长期共进化的结果。迄今为止,变形链球菌中报道的次级代谢产物包括10种细菌素(又称变链素)和一种聚酮/非核糖体肽类化合物。这些化合物多样的活性形式暗示了它们参与口腔生物被膜中跨种间和跨界间的相互作用。未来随着变形链球菌菌株数目的增加和更多菌株全基因组序列的完成,可以预见会有更多新颖活性次级代谢产物的出现。对变形链球菌次级代谢的研究不仅有助于治疗和预防口腔疾病,而且新颖活性次级代谢产物的发现对新药的研发也具有重要意义。 相似文献