首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ArtJ is the substrate-binding component (receptor) of the ATP-binding cassette (ABC) transport system ArtJ-(MP)2 from the thermophilic bacterium Geobacillus stearothermophilus that is specific for arginine, lysine, and histidine. The highest affinity is found for arginine (Kd = 0.039(±0.014) μM), while the affinities for lysine and histidine are about tenfold lower. We have determined the X-ray structures of ArtJ liganded with each of these substrates at resolutions of 1.79 Å (arginine), 1.79 Å (lysine), and 2.35 Å (histidine), respectively. As found for other solute receptors, the polypeptide chain is folded into two distinct domains (lobes) connected by a hinge. The interface between the lobes forms the substrate-binding pocket whose geometry is well preserved in all three ArtJ/amino acid complexes. Structure-derived mutational analyses indicated the crucial role of a region in the carboxy-terminal lobe of ArtJ in contacting the transport pore Art(MP)2 and revealed the functional importance of Gln132 and Trp68. While variant Gln132Leu exhibited lower binding affinity for arginine but no binding of lysine and histidine, the variant Trp68Leu had lost binding activity for all three substrates. The results are discussed in comparison with known structures of homologous proteins from mesophilic bacteria.  相似文献   

2.
Many bioactive peptides are featured by their unique amino acid compositions such as argine/lysine‐rich peptides. However, histidine‐rich bioactive peptides are hardly found. In this study, histidine‐containing peptides were constructed by selectively replacing the corresponded lysine residues in a lytic peptide LL‐1 with histidines. Interestingly, all resulting peptides demonstrated pH‐dependent activities. The cell lysis activities of these peptides could be increased up to four times as the solution pHs dropped from pH = 7.4 to pH = 5.5. The pH sensitivity of a histidine‐containing peptide was determined by histidine substitution numbers. Peptide derivatives with more histidines were associated with increased pH sensitivity. Results showed that not the secondary structures but pH‐affected cell affinity changes were responsible for the pH‐dependent activities of histidine‐containing peptides. The histidine substitution approach demonstrated here may present a general strategy to construct bioactive peptides with desired pH sensitivity for various applications. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Ramu Y  Klem AM  Lu Z 《Biochemistry》2001,40(12):3601-3605
Tertiapin-Q (TPN(Q)), a honey bee toxin derivative, inhibits inward-rectifier K(+) channels by binding to their external vestibule. In the present study we found that TPN(Q) inhibition of the channels is profoundly affected by extracellular pH. This pH dependence mainly reflects titration of histidine residue 12 in TPN(Q) by extracellular protons, since it largely vanishes when the histidine residue is replaced with alanine. Not surprisingly, this alanine derivative of TPN(Q) binds to the channel with much lower affinity. Quantitative thermodynamic cycle analysis shows that deprotonation of the histidine residue reduces the TPN(Q)-ROMK1 binding energy by 1.6 kcal/mol. To eliminate pH sensitivity but retain high affinity, we derivatized TPN(Q) by replacing histidine 12 with lysine. This derivative-denoted tertiapin-KQ (TPN(KQ))-not only is practically insensitive to extracellular pH but also binds to the channel with even higher affinity than TPN(Q) at extracellular pH 7.6.  相似文献   

4.
Summary Salivary histatins provide the non-immune defense against oral pathogens such as Candida albicans. The structural requirements of histatin-5 for anticandida activity were examined with respect to its ability to adopt helical structures, its electrostatic interactions and the hydrogen-bonding potency of its basic residues. For this purpose, the lysine and/or histidine residues of histatin-5 were chemically modified by acetylation and permethylation. Acetylated histatin-5 retained its ability to adopt helical structures in 2,2,2-trifluoroethanol, but completely lost its ability to kill yeast cells. In contrast, permethylated histatin-5 shows very little tendency to adopt a helical structure, but retained significant anticandida activity. The results suggest that the candidacidal activity can arise even when the histatin does not have the ability to adopt helical structures. The candidacidal activity of the derivatives is discussed in terms of electrostatic interactions and hydrogen-bonding potency.  相似文献   

5.
Tyrosyl-DNA phosphodiesterase I (Tdp1) is involved in the repair of DNA lesions created by topoisomerase I in vivo. Tdp1 is a member of the phospholipase D (PLD) superfamily of enzymes and hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and free tyrosine in vitro. Here, we use synthetic 3'-(4-nitro)phenyl, 3'-(4-methyl)phenyl, and 3'-tyrosine phosphate oligonucleotides to study human Tdp1. Kinetic analysis of human Tdp1 (hTdp1) shows that the enzyme has nanomolar affinity for all three substrates and the overall in vitro reaction is diffusion-limited. Analysis of active-site mutants using these modified substrates demonstrates that hTdp1 uses an acid/base catalytic mechanism. The results show that histidine 493 serves as the general acid during the initial transesterification, in agreement with hypotheses based on previous crystal structure models. The results also argue that lysine 495 and asparagine 516 participate in the general acid reaction, and the analysis of crystal structures suggests that these residues may function in a proton relay. Together with previous crystal structure data, the new functional data provide a mechanistic understanding of the conserved histidine, lysine and asparagine residues found among all PLD family members.  相似文献   

6.
The method of disk-electrophoresis in PAAG has shown that hemoglobin of domestic ducks is heterogeneous and consists of four electrophoretically homogeneous fractions: two fractions with high content of protein and two minor fractions. They differ in the content of lysine, histidine, serine, glycine, glutamic acid, tyrosine and phenyl alanine as well as in affinity to molecular oxygen. The minor fractions are characterized by low and high affinity to oxygen and fractions with high content of protein occupy an intermediate position.  相似文献   

7.
Human UDP-glucose dehydrogenase (UGDH) is a homohexameric enzyme that catalyzes two successive oxidations of UDP-glucose to yield UDP-glucuronic acid, an essential precursor for matrix polysaccharide and proteoglycan synthesis. We previously used crystal coordinates for Streptococcus pyogenes UGDH to generate a model of the human enzyme active site. In the studies reported here, we have used this model to identify three putative active site residues: lysine 220, aspartate 280, and lysine 339. Each residue was site-specifically mutagenized to evaluate its importance for catalytic activity and maintenance of hexameric quaternary structure. Alteration of lysine 220 to alanine, histidine, or arginine significantly impaired enzyme function. Assaying activity over longer time courses revealed a plateau after reduction of a single equivalent of NAD+ in the alanine and histidine mutants, whereas turnover continued in the arginine mutant. Thus, one role of this lysine may be to stabilize anionic transition states during substrate conversion. Mutation of aspartate 280 to asparagine was also severely detrimental to catalysis. The relative position of this residue within the active site and dependence of function on acidic character point toward a critical role for aspartate 280 in activation of the substrate and the catalytic cysteine. Finally, changing lysine 339 to alanine yielded the wild-type Vmax, but a 165-fold decrease in affinity for UDP-glucose. Interestingly, gel filtration of this substrate-binding mutant also determined it was a dimer, indicating that hexameric quaternary structure is not critical for catalysis. Collectively, this analysis has provided novel insights into the complex catalytic mechanism of UGDH.  相似文献   

8.
A steady-state level of about 240 nmol/mg (dry wt) occurs during lysine transport in Saccharomyces cerevisiae. No subsequent efflux of the accumulated amino acid was detected. Two transport systems mediate lysine transport, a high-affinity, lysine-specific system and an arginine-lysine system for which lysine exhibits a lower affinity. Preloading with lysine, arginine, glutamic acid, or aspartic acid inhibited lysine transport activity; preloading with glutamine, glycine, methionine, phenylalanine, or valine had little effect; however, preloading with histidine stimulated lysine transport activity. These preloading effects correlated with fluctuations in the intracellular lysine and/or arginine pool: lysine transport activity was inhibited when increases in the lysine and/or arginine pool occurred and was stimulated when decreases in the lysine and/or arginine pool occurred. After addition of lysine to a growing culture, lysine transport activity was inhibited more than threefold in one-third of the doubling time of the culture. These results indicate that the lysine-specific and arginine-lysine transport systems are regulated by feedback inhibition that may be mediated by intracellular lysine and arginine.  相似文献   

9.
The rational designing of binding abilities in proteins requires an understanding of the relationship between structure and thermodynamics. However, our knowledge of the molecular origin of high‐affinity binding of ligands to proteins is still limited; such is the case for l ‐lysine–l ‐arginine–l ‐ornithine periplasmic binding protein (LAOBP), a periplasmic binding protein from Salmonella typhimurium that binds to l ‐arginine, l ‐lysine, and l ‐ornithine with nanomolar affinity and to l ‐histidine with micromolar affinity. Structural studies indicate that ligand binding induces a large conformational change in LAOBP. In this work, we studied the thermodynamics of l ‐histidine and l ‐arginine binding to LAOBP by isothermal titration calorimetry. For both ligands, the affinity is enthalpically driven, with a binding ΔCp of ~?300 cal mol?1 K?1, most of which arises from the burial of protein nonpolar surfaces that accompanies the conformational change. Osmotic stress measurements revealed that several water molecules become sequestered upon complex formation. In addition, LAOBP prefers positively charged ligands in their side chain. An energetic analysis shows that the protein acquires a thermodynamically equivalent state with both ligands. The 1000‐fold higher affinity of LAOBP for l ‐arginine as compared with l ‐histidine is mainly of enthalpic origin and can be ascribed to the formation of an extra pair of hydrogen bonds. Periplasmic binding proteins have evolved diverse energetic strategies for ligand recognition. STM4351, another arginine binding protein from Salmonella, shows an entropy‐driven micromolar affinity toward l ‐arginine. In contrast, our data show that LAOBP achieves nanomolar affinity for the same ligand through enthalpy optimization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The analysis of conformations corresponding to continuous amino acid repeat peptides (CARPs) comprising six or more residues in proteins of known three-dimensional structure revealed that alanine, glycine, glutamic acid, proline, valine, histidine, aspartic acid, glutamine and lysine were associated as repeating amino acid residues. Alanine, glycine and histidine CARPs were most common, although the histidine hexapeptide and large CARPs mainly correspond to affinity tags and are not part of the native protein sequence. The Ala and Glu CARPs were observed either as part of helix, or coil or a combination of these conformations. The octapeptide Ala CARP in six-hairpin glycosidases was observed as part of strand and coil conformation. The Gly and Pro CARPs were mainly associated with coil conformation. Majority of the coil regions in CARPs contained beta and gamma-turn structural motifs. The conformations of the Asp, Glu and Lys hexapeptide or larger CARPs were not defined in the corresponding protein three-dimensional structures analyzed. The longest CARP of known conformation was observed for alanine as a decapeptide in a lysozyme-like protein that corresponds to helix. A feature of CARPs is that a majority are exposed to solvent with accessible surface area greater than 200 ?(2) units in the protein three-dimensional structure.  相似文献   

11.
Ethly vinyl sulfone (EVS) alkylates xi-amino groups of lysine side chains and imidazole groups of histidine residues in proteins. Amino acid analysis of hydrolyzates of EVS-treated polylysine shows that lysine forms two derivatives, presumably xi-N-(ethylsulfonylethyl)lysine and xi, xi, N,N-bis(ethylsulfonylethyl)lysine that are eluted as well-resolved peaks on the (long basic) physiological column of our amino acid analyzer at about 118 and 60 min, respectively. Peaks with identical elution times were also observed after EVS-treatment of BSA and wool. The postulated histidine derivative, presumably N3-im-(ethylsulfonylethyl)histidine is also eluted as a well-resolved peak on the same column at about 90 min. A peak with an identical elution time was observed in a hydrolyzate of EVS-treated polyhistidine. The described alkylation has potential utility for modifying proteins.  相似文献   

12.
Catalysis of Slow C-Terminal Processing Reactions by Carboxypeptidase H   总被引:2,自引:1,他引:1  
A hypothesis was examined that carboxypeptidase H (CpAse H), which is known to catalyse the release of lysine and arginine from the C-terminus of peptides, can also release histidine, tyrosine, and phenylalanine. Synthetic peptides terminating in -His-Lys or -Tyr-Lys were used as model substrates for the enzyme and amino acid analysis was employed to detect release of the terminal amino acids. With N-acetyl-beta-Ala-Asn-Ala-His-Lys and N-acetyl-beta-Ala-Asn-Ala-Tyr-Lys, which correspond to intermediates in the processing of porcine and human beta-endorphin, lysine was removed rapidly and quantitatively but no release of histidine or tyrosine could be detected. To allow more sensitive analysis, radiolabelled substrates were employed and the amounts of the products formed on incubation with CpAse H were determined after separation by ion-exchange chromatography. With 125I-D-Tyr-Ala-His-Lys-Lys as substrate at pH 5.7, very small amounts of D-Tyr-Ala were released; the main product was D-Tyr-Ala-His. At pH 5.0 the release of histidine from 125I-D-Tyr-Ala-His took place 6,000 times more slowly than the release of lysine from 125I-D-Tyr-Ala-Lys. When the tripeptides were incubated at pH 5 with porcine pituitary secretory granules, the lysine was released rapidly but no release of histidine could be detected. The results demonstrate that CpAse H catalyses the release of C-terminal histidine with great difficulty.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The LRP (low-density lipoprotein receptor-related protein) can bind a wide range of structurally diverse ligands to regions composed of clusters of ~40 residue Ca2+-dependent, disulfide-rich, CRs (complement-like repeats). Whereas lysine residues from the ligands have been implicated in binding, there has been no quantification of the energetic contributions of such interactions and hence of their relative importance in overall affinity, or of the ability of arginine or histidine residues to bind. We have used four representative CR domains from the principal ligand-binding cluster of LRP to determine the energetics of interaction with well-defined small ligands that include methyl esters of lysine, arginine, histidine and aspartate, as well as N-terminally blocked lysine methyl ester. We found that not only lysine but also arginine and histidine bound well, and when present with an additional proximal positive charge, accounted for about half of the total binding energy of a protein ligand such as PAI-1 (plasminogen activator inhibitor-1). Two such sets of interactions, one to each of two CR domains could thus account for almost all of the necessary binding energy of a real ligand such as PAI-1. For the CR domains, a central aspartate residue in the sequence DxDxD tightens the Kd by ~20-fold, whereas DxDDD is no more effective. Together these findings establish the rules for determining the binding specificity of protein ligands to LRP and to other LDLR (low-density lipoprotein receptor) family members.  相似文献   

14.
l-amino acid oxidases of Proteus rettgeri.   总被引:4,自引:2,他引:2       下载免费PDF全文
Proteus rettgeri has been found to contain two separable 1-amino acid oxidases. Both enzymes are particulate in nature, neither being ribosomal bound. One of these enzymes appears to have broad specificity, being active toward monoaminomonocarboxylic, imino, aromatic, sulfur-containing, and beta-hydroxyamino acids. The other enzyme has more limited specificity, catalyzing the oxidative deamination of the basic amino acids and citrulline. The affinity of this oxidase for the various substrates at pH 7.6 in decreasing order is arginine, histidine, ornithine, citrulline, and lysine. This enzyme has a particularly high affinity for arginine (Km equal to 0.27 mM), and anomalous kinetics are observed with increasing substrate concentrations. When concentrations of arginine greater than 1.0mM were added to the reaction containing histidine, imidazole pyruvate formation was completely inhibited.  相似文献   

15.
The effect of altering oligosaccharide structures at sites 184 and 448 of tissue plasminogen activator (tPA) has been examined. Alteration to high-mannose forms at sites 184 and 448 was accomplished by the growth of cells in the presence of deoxymannojirimycin (dMM). Modification to neutral, unsialylated forms at these sites was achieved by neuraminidase treatment of control preparations of tPA. Oligosaccharides at site 117 were not markedly affected by either treatment because structures at this site are high-mannose and not sialylated in untreated preparations. The effect on enzymatic activity and on a related property, lysine affinity, was determined. dMM treatment was found to increase both the lysine affinity and catalytic activity of tPA. Neuraminidase treatment increased enzyme activity, but was without effect on affinity for lysine. To evaluate the effects of alterations at site 184 and site 448, the catalytic activity and lysine affinity of type I and type II tPA were monitored individually. In the dMM-treated sample, type I tPA (with sugars at sites 117, 184 and 448) was found to have 2- to 3-fold increased catalytic activity and an affinity for lysine which was greater than that of type I from untreated preparations, but less than that of control type II tPA (containing sugar only at sites 117 and 448). In neuraminidase-treated type I, catalytic activity was also enhanced but lysine affinity remained unchanged. Type II from dMM- and neuraminidase-treated preparations had catalytic activity that was increased approximately 1.5-fold compared to untreated controls, whereas affinity for lysine was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Extracellular-superoxide dismutase (EC-SOD) is a secretory glycoprotein that is major SOD isozyme in extracellular fluids. We revealed the possible structure of the carbohydrate chain of serum EC-SOD with the serial lectin affinity technique. The structure is a biantennary complex type with an internal fucose residue attached to asparagine-linked N-acetyl-D-glucosamine and with terminal sialic acid linked to N-acetyllactosamine. EC-SOD in plasma is heterogeneous with regard to heparin affinity and can be divided into three fractions: A, without affinity; B, with intermediate affinity; and C, with high affinity. It appeared that this heterogeneity is not dependent on the carbohydrate structure upon comparison of EC-SOD A, B, and C. No effect of the glycopeptidase F treatment of EC-SOD C on its heparin affinity supported the results. A previous report showed that both lysine and arginine residues probably at the C-terminal end, contribute to heparin binding. Recombinant EC-SOD C treated with trypsin or endoproteinase Lys C, which lost three lysine residues (Lys-211, Lys-212, and Lys-220) or one lysine residue (Lys-220) at the C-terminal end, had no or weak affinity for the heparin HPLC column, respectively. The proteinase-treated r-EC-SOD C also lost triple arginine residues which are adjacent to double lysine residues. These results suggest that the heparin-binding site may occur on a "cluster" of basic amino acids at the C-terminal end of EC-SOD C. EC-SOD is speculated to be primarily synthesized as type C, and types A and B are probably the result of secondary modifications. It appeared that the proteolytic cleavage of the exteriorized lysine- and arginine-rich C-terminal end in vivo is a more important contributory factor to the formation of EC-SOD B and/or EC-SOD A.  相似文献   

17.
Chemical modification studies of manganese(III)-containing acid phosphatase [EC 3.1.3.2] were carried out to investigate the contributions of specific amino-acid side-chains to the catalytic activity. Incubation of the enzyme with N-ethylmaleimide at pH 7.0 caused a significant loss of the enzyme activity. The inactivation followed pseudo-first-order kinetics. Double log plots of pseudo-first-order rate constant vs. concentration gave a straight line with a slope of 1.02, suggesting that the reaction of one molecule of reagent per active site is associated with activity loss. The enzyme was protected from inactivation by the presence of molybdate or phosphate ions. Amino acid analyses of the N-ethylmaleimide-modified enzyme showed that the 96%-inactivated enzyme had lost about one histidine and one-half lysine residue per enzyme subunit without any significant decrease in other amino acids, and also demonstrated that loss of catalytic activity occurred in parallel with the loss of histidine residue rather than that of lysine residue. Molybdate ions also protected the enzyme against modification of the histidine residue. The enzyme was inactivated by photooxidation mediated by methylene blue according to pseudo-first-order kinetics. The pH profile of the inactivation rates of the enzyme showed that an amino acid residue having a pKa value of approximately 7.2 was involved in the inactivation. These studies indicate that at least one histidine residue per enzyme subunit participates in the catalytic function of Mn(III)-acid phosphatase.  相似文献   

18.
19.
The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA3 was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.  相似文献   

20.
Two forms of urokinase (EC 3.4.99.26) with apparent molecular weights of 33 400 and 47 000 purified by affinity chromatography have been modified specifically with newly synthesized peptide chloroketones by affinity labeline. Rapid inactivation of the enzyme preparations was observed with Ac-Gly-Lys-CH2 Cl and Nle-Gly-Lys-CH2 Cl which might be associated with a change in which a histidine residue is lost. After performic acid oxidation, an equivalent amount of 3-carboxymethyl histidine could be recovered, indicating alkylation at the N-3 of a histidine residue. In the case of the norleucine derivative, norleucine was concomitantly incorporated into the protein. It is thus likely that urokinase belongs in the class of enzymes utilizing the Asp..His..Ser triad for their catalytic action. The two active site residues so far identified, serine and histidine, were located in the heavy chain (33 100 mol. wt) of the 47 000 molecular weight form and in the 33 400 molecular weight form, the molecular weight of which remained constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号