首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed exchange transfusion methods to alter the hematocrit of tumour-bearing mice. The effects of anaemia and its correction by blood transfusion on the radiosensitivity of two mouse tumours (SCCVII/St and RIF-1) were studied using excision, in vivo/in vitro assay. An acute reduction in haematocrit caused a high degree of radioresistance equivalent to an increase in the hypoxic fractions by factors of 10 (SCCVII/St) and 30 (RIF-1). As the duration of the anaemia was prolonged, radioresistance was lost until within about 6 h normal radiosensitivity was observed even though the anaemia persisted. The restoration of the normal haematocrit by red blood cell transfusion after 24 h of anaemia caused increased radiosensitivity equivalent to a reduction in the hypoxic fraction by factors of 5 (SCCVII/St) and 10 (RIF-1), but again the effect was transient and normal radiosensitivity was re-established within 24-48 h of retransfusion. Measurements of 14C misonidazole (MISO) binding to RIF-1 tumours after these procedures indicated changes in the number of hypoxic cells which were qualitatively almost identical to those using the cell survival endpoint, leading us to believe that changes in oxygenation were responsible for the altered radiosensitivity. We feel that transfusion procedures could be used to advantage in the radiotherapy of some cancers.  相似文献   

2.
Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization.  相似文献   

3.
We analyzed desmin and vimentin accumulation in chick myocardiocyte cultures treated with the fibric acid derivatives bezafibrate, fenofibrate and gemfibrozil. The most noteworthy finding was the 50% decrease in the cytoplasmic desmin fraction in cells treated with gemfibrozil in comparison to control cultures, and the 19% increase in the cytoskeletal fraction in cultures treated with gemfibrozil and with bezafibrate. Vimentin accumulation by cells treated with bezafibrate was similar to that in control cultures, however the cytoskeletal vimentin fraction rose by 26% after treatment with gemfibrozil, and fell 13% after treatment with fenofibrate. No vimentin was found in the cytoplasmic fraction of cell treated with bezafibrate. Given the role of intermediate filaments in heart muscle contraction, fibric acid derivative- induced changes in the cytoplasmic and cytoskeletal concentrations of intermediate filament proteins may be related with the secondary effects of these drugs on heart rate.  相似文献   

4.
The purpose of this study was to test whether chronically enhanced O2 delivery to tissues, without arterial hyperoxia, can change acute ventilatory responses to hypercapnia and hypoxia. The effects of decreased hemoglobin (Hb)-O2 affinity on ventilatory responses during hypercapnia (0, 5, 7, and 9% CO2 in O2) and hypoxia (10 and 15% O2 in N2) were assessed in mutant mice expressing Hb Presbyterian (mutation in the beta-globin gene, beta108 Asn --> Lys). O2 consumption during normoxia, measured via open-circuit methods, was significantly higher in the mutant mice than in wild-type mice. Respiratory measurements were conducted with a whole body, unrestrained, single-chamber plethysmograph under conscious conditions. During hypercapnia, there was no difference between the slopes of the hypercapnic ventilatory responses, whereas minute ventilation at the same levels of arterial PCO2 was lower in the Presbyterian mice than in the wild-type mice. During both hypoxic exposures, ventilatory responses were blunted in the mutant mice compared with responses in the wild-type mice. The effects of brief hyperoxia exposure (100% O2) after 10% hypoxia on ventilation were examined in anesthetized, spontaneously breathing mice with a double-chamber plethysmograph. No significant difference was found in ventilatory responses to brief hypoxia between both groups of mice, indicating possible involvement of central mechanisms in blunted ventilatory responses to hypoxia in Presbyterian mice. We conclude that chronically enhanced O2 delivery to peripheral tissues can reduce ventilation during acute hypercapnic and hypoxic exposures.  相似文献   

5.
We determined the "in vivo" (arterial pH and PCO2) and standard (pH = 7.4, PCO2 = 40 mm Hg) PO2 at 50% O2 saturation of hemoglobin (P50, vv and P50, st) in Wistar albino rats when living in a normobaric hypoxic environment. Two generations of hypoxic rats were observed for changes in their P50, vv, P50, st, (n50) 2,3-diphosphoglycerate (2,3-DPG), hemoglobin (Hb) and DPG-Hb ratio: the first generation (H1) and the second generation (H2). A few hours after birth, the H1 rats were placed and raised in a normobaric hypoxic environment (10% O2 in N2). The H2 rats were born from hypoxic parents of first generation and were raised in the same hypoxic environment. The control group had a normoxic environment. The P50, st was significantly higher in H1 rats than both H2 and controls. P50, st was similar in H2 and control rats. The P50, vv was significantly higher in H1 rats than both H2 and controls but it was significantly lower in H2 when compared with both controls and H1. Hb and 2,3-DPG had values significantly greater for both H1 and H2 when compared with their controls. However, the values of H2 were significantly lower than H1. The effectiveness of an increase in Hb-O2 affinity as an adaptive mechanism in H2 rats is discussed.  相似文献   

6.
Bezafibrate belongs to the class of fibric acid derivatives usually used as antihyperlipidemia agents. From the biochemical point of view, these drugs show intriguing properties which leads one to think they may promote a differentiation process in tumour cells. This new pharmacological activity of fibrates could partially depend on the induction of an oxidative stress. To test this hypothesis, the effect of bezafibrate, as well as of clofibric acid and gemfibrozil, on growth, functional and cytochemical characteristics of human leukaemia-derived cell lines HL-60, U-937 and K-562 has been studied in some details. The results show that bezafibrate, gemfibrozil and clofibric acid, do induce differentiation in human myeloid leukaemia cell lines as indicated by several differentiation markers. Moreover fibrates, in dose dependent manner, significantly alter the cell cycle distributions, mainly leading to G0/G1 phase increment and G2/M phase reduction. The differentiating activity of fibrates could have significant implications both for the pharmacotoxicological profile of this class of compounds and for the pathophysiology of neoplastic disease.  相似文献   

7.
Human hemoglobin (Hb) conjugated to benzene tetracarboxylate substituted dextran produces a polymeric Hb (Dex-BTC-Hb) with similar oxygen affinity to that of red blood cells (P(50)=28-29 mm Hg). Under physiological conditions, the oxygen affinity (P(50)) of Dex-BTC-Hb is 26 mm Hg, while that of native purified human HbA(0) is 14 mm Hg, but it exhibits a slight reduction in cooperativity (n(50)), Bohr effect, and lacks sensitivity to inositol hexaphosphate (IHP), when compared to HbA(0). Oxygen-binding kinetics, measured by rapid mixing stopped-flow method showed comparable oxygen dissociation and association rates for both HbA(0) and Dex-BTC-Hb. The rate constant for NO-mediated oxidation of the oxy form of Dex-BTC-Hb, which is governed by NO entry to the heme pocket, was reduced to half of the value obtained for HbA(0). Moreover, Dex-BTC-Hb is only slightly more sensitive to oxidative reactions than HbA(0), as shown by about 2-fold increase in autoxidation, and slightly higher H(2)O(2) reaction and heme degradation rates. Dextran-BTC-based modification of Hb produced an oxygen-carrying compound with increased oxygen release rates, decreased oxygen affinity and reduced nitric oxide scavenging, desirable properties for a viable blood substitute. However, the reduction in the allosteric function of this protein and the lack of apparent quaternary T-->R transition may hinder its physiological role as an oxygen transporter.  相似文献   

8.
Cultured rat epididymal preadipocytes exposed for 24-72 h to either bezafibrate or clofibrate added to the culture medium were extensively converted to fat-loaded adipocytes. Adipocyte conversion increased during the first 5-7 days following plating, reaching a level of 100% and 60% conversion with bezafibrate and clofibrate, respectively, as compared to 10% conversion in their absence. Adipocyte conversion in culture was a saturable function of the hypolipidemic effectors and was associated with an increase in the incorporation rate of exogenous palmitate into triacylglycerols, in glycerol-3-phosphate dehydrogenase and hormone-sensitive lipase activities but not in lipoprotein lipase activity. Adipocyte conversion by hypolipidemic drugs was much more prominent than that exerted by dibutyryl cAMP, and the relative conversion efficiency of the two fibrate drugs did not correlate with their respective cAMP content of the culture. Hence, hypolipidemic drugs and dibutyryl cAMP appear to act independently in initiating adipose conversion in primary epididymal preadipocytes.  相似文献   

9.
Effector binding to liganded hemoglobin (Hb) provides a new understanding of structural determinants of Hb function. L35, a bezafibrate-related compound, is one of the more potent synthetic regulators of Hb oxygen (O(2)) affinity. In the presence of inositol hexaphosphate and bezafibrate (or derivatives), liganded Hb at low pH (pH approximately 6.5) exhibits extremely low O(2) affinity and very low cooperativity. In this study, the nature of L35 binding to COHbA at pH 6.35, an altered R-state, is presented. Solution-active site-specific spectroscopic probings by front-face fluorescence and circular dichroism reveal that L35 induces a global heterogeneous conformation in COHbA at pH 6.35 that includes: a T-like structural feature at the alpha1beta2 interface; an R-like structural feature within the heme environment; and an intermediate-like state at the central cavity. These long-range structural perturbations appear to stem from L35 binding to two classes of binding sites: the central cavity (primarily at the alphaalpha cleft) and the surface. These results indicate that L35 induces an allosteric transition species, characterized by domain-specific tertiary and quaternary-like conformation within a global R-quaternary structure.  相似文献   

10.
The Hb-O2 affinity and the erythropoietic response as a function of time were studied in mice treated with sodium cyanate for up to 2 months. Cyanate increased the Hb-O2 affinity in normoxic mice more than in chronically hypoxic mice. The hemoglobin concentration rose as a function of time both in normoxic and hypoxic conditions but reached higher levels in hypoxia. After 42 days of study (21 days of hypoxia) hemoglobin reached maximum levels and thereafter showed a plateau in both cyanate and control animals. It is concluded that a chronic left-shifted oxygen dissociation curve does not avoid the development of hypoxic polycythemia in mice. Moreover, prolonged cyanate administration potentiates the crythropoietic response to chronic hypoxia. Since polycythemia is an index of tissue hypoxia, the results show that the high hemoglobin affinity did not prevent tissue hypoxia in low PO2 conditions. Results showing beneficial effects of high hemoglobin oxygen affinity induced by cyanate based on acute hypoxic expositions should be cautiously interpreted with regard to their adaptive value in animals chronically exposed to natural or simulated hypoxia.Abbreviations Hb hemoglobin - NaOCN sodium cyanate - ODC oxygen dissociation curve - P 50 PO2 at which hemoglobin is half saturated with O2  相似文献   

11.
It has been thought for several years that the greatly lowered oxygen affinity, high cooperativity, and heterotropic modulation displayed by tetrameric human hemoglobin (Hb) was an exclusive result of the assembly of high affinity alpha(1)beta(1) dimers into alpha(2)beta(2) tetramers. However, in recent times, it has been shown that alpha- and beta-semihemoglobins, namely alpha(heme)beta(apo) and alpha(apo)beta(heme), which are dimers of Hb characterized by a high affinity for oxygen and lack of cooperativity do respond to effectors such as 2-[4-(3,5-dichlorophenylureido) phenoxy]-2-methylpropionic acid (L35), a bezafibrate (BZF) related compound, by decreasing the ligand affinity to a considerable extent (between 60- and 130-fold). In order to shed some light on the structural basis of this phenomenon, we have developed a binding mode of L35 to semihemoglobins through docking analysis using the program GRID. Molecular modelling studies did identify sites on semihemoglobins where favourable interactions with L35 can occur. We found that the effector binds differently to the two semihemoglobins exhibiting high affinity only for the alpha chain heme pocket. The proposed binding models are consistent with the experimental findings and may be rationalized in terms of different hydrophobic and hydrophilic characteristics between alpha- and beta-heme pockets of Hb.  相似文献   

12.
The primary structures of the hemoglobins Hb A, Hb A', Hb D and Hb D' of Rüppell's Griffon (Gyps rueppellii), which can fly as high as 11,300 m, are presented. The globin chains were separated on CM-Cellulose in 8M urea buffers, the four hemoglobin components by FPLC in phosphate buffers. The amino-acid sequences of five globin chains were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid-phase and gas-phase sequenators. The sequences are compared with those of other Falconiformes. A new molecular pattern for survival at extreme altitudes is presented. For the first time four hemoglobins are found in blood of a bird; they show identical beta-chains and differ in the alpha A- and alpha D-chains by only one replacement. These four hemoglobins cause a gradient in oxygen affinities. The two main components Hb A and Hb A' differ at position alpha 34 Thr/Ile. In case of Ile as found in Hb A' an alpha 1 beta 1-interface is interrupted raising oxygen affinity compared to Hb A. In addition the hemoglobins of the A- and D-groups differ at position alpha 38 Pro or Gln/Thr (alpha 1 beta 2-interface). Expression of Gln in Hb D/D' raises the oxygen affinity of these components compared to Hb A/A' by destabilization of the deoxy-structure. The physiological advantage lies in the functional interplay of four hemoglobin components. Three levels of affinity are predicted: low affinity Hb A, Hb A' of intermediate affinity, and high affinity Hb D/D'. This cascade tallies exactly with oxygen affinities measured in the isolated components and predicts oxygen transport by the composite hemoglobins over an extended range of oxygen affinities. It is contended that the mechanisms of duplication of the alpha-genome (creating four hemoglobins) and of nucleotide replacements (creating different functional properties) are responsible for this remarkable hypoxic tolerance to 11,300 m. Based on this pattern the hypoxic tolerances of other vultures are predicted.  相似文献   

13.
Hemoglobin zeta(2)beta(2)(S) is generated by substituting embryonic zeta-globin subunits for the normal alpha-globin components of Hb S (alpha(2)beta(2)(S)). This novel hemoglobin has recently been shown to inhibit polymerization of Hb S in vitro and to normalize the pathological phenotype of mouse models of sickle cell disease in vivo. Despite its promise as a therapeutic tool in human disease, however, the basic O(2)-transport properties of Hb zeta(2)beta(2)(S) have not yet been described. Using human hemoglobins purified from complex transgenic-knockout mice, we show that Hb zeta(2)beta(2)(S) exhibits an O(2) affinity as well as a Hill coefficient, Bohr response, and allosteric properties in vitro that are suboptimally suited for physiological O(2) transport in vivo. These data are substantiated by in situ analyses demonstrating an increase in the O(2) affinity of intact erythrocytes from mice that express Hb zeta(2)beta(2)(S). Surprisingly, though, co-expression of Hb zeta(2)beta(2)(S) leads to a substantial improvement in the tissue oxygenation of mice that model sickle cell disease. These analyses suggest that, in the context of sickle cell disease, the beneficial antisickling effects of Hb zeta(2)beta(2)(S) outweigh its O(2)-transport liabilities. The potential structural bases for the antisickling properties of Hb zeta(2)beta(2)(S) are discussed in the context of these new observations.  相似文献   

14.
The bimodal gill(water)/gut(air)-breathing Amazonian catfish Hoplosternum littorale that frequents hypoxic habitats uses "mammalian" 2,3-diphosphoglycerate (DPG) in addition to "piscine" ATP and GTP as erythrocytic O(2) affinity modulators. Its electrophoretically distinct anodic and cathodic hemoglobins (Hb(An) and Hb(Ca)) were isolated for functional and molecular characterization. In contrast to Hb(An), phosphate-free Hb(Ca) exhibits a pronounced reverse Bohr effect (increased O(2) affinity with decreasing pH) that is obliterated by ATP, and opposite pH dependences of K(T) (O(2) association constant of low affinity, tense state) and the overall heat of oxygenation. Dose-response curves indicate small chloride effects and pronounced and differentiated phosphate effects, DPG < ATP < GTP < IHP. Hb(Ca)-O(2) equilibria analyzed in terms of the Monod-Wyman-Changeux model show that small T state bond energy differences underlie the differentiated phosphate effects. Synthetic peptides, corresponding to N-terminal fragment of the cytoplasmic domain of trout band 3 protein, undergo oxygenation-linked binding to Hb(Ca), suggesting a metabolic regulatory role for this hemoglobin. The amino acid sequences for the alpha and beta chains of Hb(Ca) obtained by Edman degradation and cDNA sequencing show unusual substitutions at the phosphate-binding site that are discussed in terms of its reverse Bohr effect and anion sensitivities.  相似文献   

15.
Systemic O2 transport during maximal exercise at different inspired PO2 (PIO2) values was studied in sodium cyanate-treated (CY) and nontreated (NT) rats. CY rats exhibited increased O2 affinity of Hb (exercise O2 half-saturation pressure of Hb = 27.5 vs. 42.5 Torr), elevated blood Hb concentration, pulmonary hypertension, blunted hypoxic pulmonary vasoconstriction, and normal ventilatory response to exercise. Maximal rate of convective O2 transport was higher and tissue O2 extraction was lower in CY than in NT rats. The relative magnitude of these opposing changes, which determined the net effect of cyanate on maximal O2 uptake (VO2 max), varied at different PIO2: VO2 max (ml. min-1. kg-1) was lower in normoxia (72.8 +/- 1.9 vs. 81. 1 +/- 1.2), the same at 70 Torr PIO2 (55.4 +/- 1.4 vs. 54.1 +/- 1.4), and higher at 55 Torr PIO2 (48 +/- 0.7 vs. 40.4 +/- 1.9) in CY than in NT rats. The beneficial effect of cyanate on VO2 max at 55 Torr PIO2 disappeared when Hb concentration was lowered to normal. It is concluded that the effect of cyanate on VO2 max depends on the relative changes in blood O2 convection and tissue O2 extraction, which vary at different PIO2. Although uptake of O2 by the blood in the lungs is enhanced by cyanate, its release at the tissues is limited, probably because of a reduction in the capillary-to-tissue PO2 diffusion gradient secondary to the increased O2 affinity of Hb.  相似文献   

16.
Hypoxic or anemic goats with the A hemoglobin genotype switch to the production of hemoglobin C, resulting in a reduced blood oxygen affinity. However, the physiologic consequences of this switch are not clear. We therefore studied the gas exchange properties of the two hemoglobin types. We found that purified hemoglobins A and C have very similar oxygen affinities and H+ Bohr effects, but in the presence of CO2, the affinity of hemoglobin C is substantially less than that of hemoglobin A. That this is not a nonspecific ionic effect is suggested by identical effects of NaCl on O2 binding to the two proteins and by a 2-fold higher capacity of hemoglobin C to bind CO2. The data can be explained by a class of CO2 binding sites in the beta C chain whose affinity is much higher than that of either of the primary sites or of those in Hb A. Our results suggest that in hemoglobin C-containing red cells CO2 acts as a potent allosteric effector, analogous to the role played by 2,3-diphosphoglycerate in human red blood cells. Goat hemoglobin C may have advantages over hemoglobins A or B in O2 transport under hypoxic conditions or in anemia.  相似文献   

17.
The induction of liver fatty acid binding protein (L-FABP) by the peroxisome proliferators bezafibrate and clofibrate was compared with the induction of peroxisomal (cyanide-insensitive) palmitoyl-CoA oxidation in cultured rat hepatocytes maintained on a substratum of laminin-rich (EHS) gel. This substratum was chosen because marked induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was effected by bezafibrate in hepatocytes supported on EHS gel, whereas only peroxisomal palmitoyl-CoA oxidation was induced in hepatocytes maintained on collagen-coated plates. In control cells on EHS, activity of peroxisomal palmitoyl-CoA oxidation remained stable, while L-FABP abundance declined with time, and L-FABP mRNA was undetectable after 5 days. In cultures exposed to bezafibrate or clofibrate, peroxisomal palmitoyl-CoA oxidation activity was induced earlier and more rapidly than L-FABP. When fibrates were withdrawn, peroxisomal palmitoyl-CoA oxidation declined rapidly, whereas L-FABP continued to increase. L-FABP induction was accompanied by a striking increase in mRNA specifying this protein. Tetradecylglycidic acid, an inhibitor of carnitine palmitoyltransferase I, effectively doubled peroxisomal palmitoyl-CoA oxidation activity. However, tetradecylglycidic acid markedly inhibited fibrate induction of L-FABP and peroxisomal palmitoyl-CoA oxidation but, unexpectedly, did not prevent the fibrate-induced proliferation of peroxisomes. Maximal induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was produced at a bezafibrate concentration in the culture medium (0.05 mM) much lower than that of clofibrate (0.3 mM). Also, bezafibrate, but not clofibrate, inhibited [1-14C]oleic acid binding to L-FABP with a Ki = 9.5 microM. We conclude that hepatocytes maintained on EHS gel provide an important tool for investigating the regulation of L-FABP. These studies show that the induction of peroxisomal beta-oxidation and L-FABP by peroxisome proliferators are temporally consecutive but closely related processes which may be dependent on a mechanism distinct from that which leads to peroxisome proliferation. Furthermore, the mechanism of action of the more potent peroxisome proliferator, bezafibrate, may be mediated, in part, by interaction of this agent with L-FABP.  相似文献   

18.
In hemoglobin (Hb) Thionville, the substitution of a glutamic acid for the alpha-chain NH2-terminal valine inhibits the cleavage of the initiator methionine which is then acetylated. The elongation of the alpha-chain NH2 terminus modifies the three-dimensional structure of hemoglobin at a region that is known to have an important role in the allosteric regulation of oxygen binding. Relative to Hb A, Hb Thionville has a lower affinity for oxygen, and the heterotropic allosteric effects of protons, chloride, and bezafibrate are reduced. In contrast, the response to 2,3-diphosphoglycerate is normal. Analysis of oxygen equilibrium data within the framework of the two-state allosteric model indicates that the structure of deoxy Hb Thionville is stabilized relative to that of deoxy Hb A. The x-ray crystal structure of deoxy Hb Thionville shows that the glutamate side chain extends away from the alpha 1-alpha 2 interface, whereas the methionine side chain (which has two conformations) extends into the alpha 1-alpha 2 interface, physically displacing chloride and bezafibrate. The increased stability of deoxy Hb Thionville is due to new intrasubunit and intersubunit contacts made by the methionine. These interactions replace the indirect contacts, made through bound chloride ions, that Val-1 alpha normally contributes to the alpha 1-alpha 2 interface.  相似文献   

19.
The role of intracellular non-protein bound sulphydryl compounds (NPSH), and in particular that of glutathione (GSH), in the response of cells to ionizing radiation under different O2 concentrations has been assessed using cell strains deficient in glutathione synthetase and exhibiting different NPSH levels. The cell strains used originated from patients with 5-oxoprolinuria and from their relatives (heterozygotes and proficient homozygotes). No correlation has been found between NPSH and GSH concentrations and radiosensitivity under oxic, aerobic and hypoxic conditions. However, a highly significant correlation has been observed between radiosensitivity under hypoxic conditions (and therefore the oxygen enhancement ratio) and the glutathione synthetase activity, suggesting that synthesis of GSH is required after irradiation. In order to explain our results we postulated, beside radical processes, the existence of a GSH-dependent enzymatic repair mechanism for N2 type damage. Hypoxic radio-sensitivity measured with survival curves would result from the interaction of both competition and biochemical repair processes.  相似文献   

20.
Based on the properties of two low oxygen affinity mutated hemoglobins (Hb), we have engineered a double mutant Hb (rHb beta YD) in which the beta F41Y substitution is associated with K82D. Functional studies have shown that the Hb alpha 2 beta 2(C7)F41Y exhibits a decreased oxygen affinity relative to Hb A, without a significantly increased autooxidation rate. The oxygen affinity of the natural mutant beta K82D (Hb Providence-Asp) is decreased due to the replacement of two positive charges by two negative ones at the main DPG-binding site. The functional properties of both single mutants are interesting in the view of obtaining an Hb-based blood substitute, which requires: (1) cooperative oxygen binding with an overall affinity near 30 mm Hg at half saturation, at 37 degrees C, and in the absence of 2,3 diphosphoglycerate (DPG), and (2) a slow rate of autooxidation in order to limit metHb formation. It was expected that the two mutations were at a sufficient distance (20 A) that their respective effects could combine to form low oxygen affinity tetramers. The double mutant does display additive effects resulting in a fourfold decrease in oxygen affinity; it can insure, in the absence of DPG, an oxygen delivery to the tissues similar to that of a red cell suspension in vivo at 37 degrees C. Nevertheless, the rate of autooxidation, 3.5-fold larger than that of Hb A, remains a problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号