首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Patterning events that occur before the mid-blastula transition (MBT) and that organize the spatial pattern of gene expression in the animal hemisphere have been analyzed in Xenopus embryos. We present evidence that genes that play a role in dorsoventral specification display different modes of activation. Using early blastomere explants (16–128-cell stage) cultured until gastrula stages, we demonstrate by RT-PCR analysis that the expression of goosecoid (gsc), wnt-8 and brachyury (bra) is dependent on mesoderm induction. In contrast, nodal-related 3 (nr3) and siamois (sia) are expressed in a manner that is independent of mesoderm induction, however their spatially correct activation does require cortical rotation. The pattern of sia and nr3 expression reveals that the animal half of the 16-cell embryo is already distinctly polarized along the dorsoventral axis as a result of rearrangement of the egg structure during cortical rotation. Similar to the antagonistic activity between the ventral and the dorsal mesoderm, the ventral animal blastomeres can attenuate the expression of nr3 and sia in dorsal animal blastomeres. Our data suggest that no Nieuwkoop center activity at the blastula stage is required for the activation of nr3 and sia in vivo.  相似文献   

4.
Summary Mesoderm formation is a result of cell-cell interactions between the vegetal and animal hemisphere and is thought to be mediated by inducing peptide growth factors including members of the FGF and TGF superfamilies. Our immunochemical study analyses the distribution of FGF receptors coded by the human flg gene during embryogenesis of Xenopus laevis. Immunostaining was detected in the dorsal and ventral ectoderm and also in the marginal zone of early cleavage, blastula and gastrula stages. Signals were very strong in the mid and late blastula (stage 8 and 9) and declined slightly in the early gastrula (stage 10). A dramatic decrease was observed up to the late gastrula (stage 11+). In stage 13 embryos, immunostaining was only found in cells around the blastopore. Isolated ectoderm cultured in vitro showed a similar temporal expression and decrease of the signal as the normal embryos. These results indicate that receptor expression is independent of the interaction of the animal cells with the vegetal part of the embryo. Of interest is the fact that the signal cannot only be found at or near the cell surface but also within the cell. This suggests the presence of an intracellular isoform of the receptor resulting from the endogenous expression of splice variants and the internalization of transmembrane receptor. Taken together our results suggest that the loss of competence (for bFGF around stage 10) is not directly correlated with the presence of receptors. The possible roles of heparan sulphate glucosaminoglycans (low affinity receptors) and control mechanisms in the intracellular signalling pathway downstream of the receptor level should be taken into consideration.  相似文献   

5.
The most animal part of the ciliated band of sea urchin larvae, the animal plate, is a specialized region in which elongated cells form long and non-beating cilia. To learn how this region is specified, animal halves were isolated from the early cleavage to pregastrulation stages. As is well known, the animal half that is isolated at the eight-cell stage develops into a 'dauerblastula', which forms long and non-beating cilia all around the surface. The region with long cilia, however, became restricted toward the animal pole when separation was delayed. If separated before primary mesenchyme ingression, even a small animal-pole-side fragment formed a normal-sized animal plate. Thus, the prospective animal plate region is gradually restricted by some signal from the vegetal hemisphere, and the specification process terminates before the mesenchyme blastula stage. It was also known that a normal-sized animal plate was formed in micromere-less embryos, indicating that the signal does not depend on micromeres or their descendants. Further, the animal-pole-side fragments were isolated from embryos in which the third cleavage plane was shifted toward the vegetal pole. They formed a normal-sized animal plate, containing more than 75% of the egg volume from the animal pole. This indicates that the egg cytoplasm delivered to veg1 -lineage blastomeres plays an important role in the animal plate specification. Interestingly, the an1-less embryo formed long and non-beating cilia at its top region, but thickening did not occur. The cytoplasm near the animal pole might contain some factors necessary for the animal plate to become thick.  相似文献   

6.
7.
8.
Recent studies show that gastrulation in the sea urchin embryo involves movement of cells over the blastopore lip (involution). Some cells in the vegetal plate of the late blastula become bottle-shaped but they play a limited role in gastrulation. The functions of specific integrins, regulators of cell-cell adhesion, and extracellular matrix components in gastrulation are currently being analyzed. In addition, light-microscopic studies continue to provide a unique picture of dynamic cell behavior in vivo.  相似文献   

9.
Recently, beta-catenin has been reported to control the expression of morphogenetic genes through the Wnt signaling pathway in invertebrate embryogenesis. In this study, the distribution pattern of beta-catenin during starfish embryogenesis was investigated using immunohistochemistry. In 16-cell stage embryos, beta-catenin began to accumulate in some nuclei at the vegetal pole. During the early cleavage stage, the cells expressing nuclear beta-catenin increased in number in the vegetal pole region of the embryos, and the beta-catenin signal increased in intensity in each nucleus. At the blastula stage, signal for beta-catenin was also found in the cytoplasm of the cells with nuclear beta-catenin. At the vegetal plate stage, almost all vegetal plate cells expressed beta-catenin in both the nucleus and cytoplasm. When the embryos developed to early gastrulae, cells with nuclear beta-catenin were restricted to the archenteron tip, and the signal gradually faded in later stages. The localization and temporal change of beta-catenin expression suggests that beta-catenin has a pivotal role in archenteron formation in starfish embryos.  相似文献   

10.
Wnt and Nodal signaling pathways are required for initial patterning of cell fates along anterior-posterior (AP) and dorsal-ventral (DV) axes, respectively, of sea urchin embryos during cleavage and early blastula stages. These mechanisms are connected because expression of nodal depends on early Wnt/β-catenin signaling. Here, we show that an important subsequent function of Wnt signaling is to control the shape of the nodal expression domain and maintain correct specification of different cell types along the axes of the embryo. In the absence of Wnt1, the posterior-ventral region of the embryo is severely altered during early gastrulation. Strikingly, at this time, nodal and its downstream target genes gsc and bra are expressed ectopically, extending posteriorly to the blastopore. They override the initial specification of posterior-ventral ectoderm and endoderm fates, eliminating the ventral contribution to the gut and displacing the ciliary band dorsally towards, and occasionally beyond, the blastopore. Consequently, in Wnt1 morphants, the blastopore is located at the border of the re-specified posterior-ventral oral ectoderm and by larval stages it is in the same plane near the stomodeum on the ventral side. In normal embryos, a Nodal-dependent process downregulates wnt1 expression in dorsal posterior cells during early gastrulation, focusing Wnt1 signaling to the posterior-ventral region where it suppresses nodal expression. These subsequent interactions between Wnt and Nodal signaling are thus mutually antagonistic, each limiting the range of the other's activity, in order to maintain and stabilize the body plan initially established by those same signaling pathways in the early embryo.  相似文献   

11.
At the 16-cell stage, the sea urchin embryo is partitioned along the animal-vegetal axis into eight mesomeres, four macromeres, and four micromeres. The micromeres, unlike the other blastomeres, are autonomously specified to produce skeletogenic mesenchymal cells and are also required to induce the vegetal-plate territory. A long-held belief is that micromeres inherit localized maternal determinants that endow them with their cell autonomous behavior and inducing capabilities. Here, we present evidence that an orthodenticle-related protein, SpOtx appears transiently in nuclei of micromeres but not in nuclei of mesomeres and macromeres. At later stages of development, SpOtx was translocated into nuclei of all cells. To address the possibility that SpOtx was retained In the cytoplasm at early developmental stages we searched for cytoplasmic proteins that interact with SpOtx. A proline-rich region of SpOtx resembling an SH3-binding domain was used to screen an embryo cDNA expression library, and a cDNA clone was isolated and shown to be α-actinin. A yeast two-hybrid analysis showed a specific interaction between the proline-rich region of SpOtx and a putative SH3 domain of the sea urchin α-actinin. Because micromeres lack an actin-based cytoskeleton, the results suggested that, at the vegetal pole of the 16-cell stage embryo, SpOtx was translocated into micromere nuclei, whereas in other blastomeres SpOtx was actively retained in the cytoplasm by binding to α-actinin. The transient appearance of SpOtx in micromere nuclei may be associated with the specification of micromere cell fate. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
15.
A fate map has been constructed for Phoronis vancouverensis. The animal pole of the egg gives rise to the apical plate in the hood of the actinotroch larva. The vegetal pole of the egg marks the site of gastrulation. During the initiation of gastrulation the cells of the animal pole of the embryo are directly opposite those at the vegetal pole of the embryo. The plane of the first cleavage always goes through the animal-vegetal pole of the egg. In about 70% of the cases the plane of the first cleavage is perpendicular to the future anterior-posterior axis of the actinotroch larva; in the remaining cases the plane of the first cleavage is either oblique with reference to, or occurs along, the future anterior-posterior axis of the larva. Following gastrulation catecholamine-containing cells first make their appearance in the apical plate and gut cells first produce esterase. The timing of regional specification in these embryos has been examined by isolating animal or vegetal, anterior or posterior, or lateral regions at different time periods between the initiation of cleavage and gastrulation and examining their ability to differentiate. Animal halves isolated from early cleavage through late blastula stages do not gastrulate and do not form catecholamine-containing cells. When animal halves are isolated with endoderm during gastrulation, they differentiate catecholamine-containing cells. Vegetal halves isolated at the 8- to 16-cell stage gastrulate and form normal actinotroch larvae with esterase-positive gut and catecholamine-containing apical plate cells. When this same region is isolated at blastula stages it does not gastrulate and does not differentiate these cell types. Vegetal halves isolated during gastrulation subsequently form esterase-positive gut cells, but they do not form catecholamine-containing apical plate cells. When presumptive anterior, posterior, or lateral halves are isolated from early cleavage through blastula stages, each half forms a normal actinotroch larva. Lateral halves isolated during gastrulation also form normal larvae. Anterior halves isolated during late gastrulation differentiate only the anterior end of the actinotroch larva. These isolates have a hood with catecholamine-containing apical plate cells and the first part of an esterase-positive gut but lack the anlagen of the intestine and protonephridia. Posterior halves isolated during late gastrulation differentiate only the posterior end of the actinotroch which lacks a hood with catecholamine-containing cells but has an esterase-positive gut, protonephridia, and the anlagen of the intestine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Signals from micromere descendants play a crucial role in sea urchin development. In this study, we demonstrate that these micromere descendants express HpTb, a T-brain homolog of Hemicentrotus pulcherrimus. HpTb is expressed transiently from the hatched blastula stage through the mesenchyme blastula stage to the gastrula stage. By a combination of embryo microsurgery and antisense morpholino experiments, we show that HpTb is involved in the production of archenteron induction signals. However, HpTb is not involved in the production of signals responsible for the specification of secondary mesenchyme cells, the initial specification of primary mesenchyme cells, or the specification of endoderm. HpTb expression is controlled by nuclear localization of beta-catenin, suggesting that HpTb is in a downstream component of the Wnt signaling cascade. We also propose the possibility that HpTb is involved in the cascade responsible for the production of signals required for the spicule formation as well as signals from the vegetal hemisphere required for the differentiation of aboral ectoderm.  相似文献   

17.
18.
Elongated Microvilli on Vegetal Pole Cells in Sea Urchin Embryos   总被引:1,自引:1,他引:0  
The ultrastructure of cells in the vegetal pole region of sea urchin embryos during early development to the mesenchyme blastula stage was examined by scanning electron microscopy. Vegetal pole cells in the ectoderm with longer microvilli than those of neighboring cells were first detectable at the early blastula stage just before hatching. These cells with elongated microvilli remained in the central region of the vegetal plate when most vegetal plate cells ingressed into the blastocoel to form primary mesenchyme. When first detectable in the sea urchin, Anthocidaris crassispina , four vegetal pole cells had elongated microvilli, but at the time of primary mesenchyme cell ingression, the number of cells with elongated microvilli had increased to eight, apparently by cell division. These vegetal pole cells were wedge-shaped with a broad surface adhering to the hyaline layer at the time of primary mesenchyme cell ingression. SEM observation of the outer surface of embryos showed that the microvilli extended into the hyaline layer. The reinforced attachment of vegetal pole cells to the hyaline layer through their elongated microvilli may explain why these cells could remain at the vegetal pole when the surrounding cells ingressed into the blastocoel as primary mesenchyme cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号