首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In order to explore the importance of indigenous agroforestry systems for biodiversity conservation, we compared the abundance, species richness and diversity of dung beetles and terrestrial mammals across a gradient of different land use types from agricultural monocultures (plantains) to agroforestry systems (cocoa and banana) and forests in the BriBri and Cabécar indigenous reserves in Talamanca, Costa Rica. A total of 132,460 dung beetles of 52 species and 913 tracks of 27 terrestrial mammal species were registered. Dung beetle species richness and diversity were greatest in the forests, intermediate in the agroforestry systems and lowest in the plantain monocultures, while dung beetle abundance was greatest in the plantain monocultures. The number of mammal tracks per plot was significantly higher in forests than in plantain monocultures, whereas mammal species richness was higher in forests than in either cocoa agroforestry systems or plantain monocultures. Species composition of both terrestrial mammals and dung beetles also varied across the different land use types. Our study indicates that indigenous cocoa and banana agroforestry systems maintain an intermediate level of biodiversity (which is less than that of the original forest but significantly greater than that of plantain monocultures) and provide suitable habitat for a number of forest-dependent species. Although the agroforestry systems appear to serve as favorable habitats for many terrestrial mammal species, their potential positive contribution to mammal conservation is being offset by heavy hunting pressure in the reserves. As in other agricultural landscapes, the conservation of biodiversity in Talamanca will depend not only on maintaining the existing forest patches and reducing the conversion of traditional agroforestry systems to monocultures, but also on reducing hunting pressure.  相似文献   

2.
Although an increasing number of studies have shown that diverse, multi-strata agroforestry systems can contribute to the conservation of tropical biodiversity, there is still debate about how the biodiversity within agroforestry systems compares to that of intact forest and alternative land uses. In order to assess the relative importance of agroforestry systems for biodiversity conservation, we characterized bat and bird assemblages occurring in forests, two types of agroforestry systems (cacao and banana) and plantain monocultures in the indigenous reserves of Talamanca, Costa Rica. A total of 2,678 bats of 45 species were captured, and 3,056 birds of 224 species were observed. Agroforestry systems maintained bat assemblages that were as (or more) species-rich, abundant and diverse as forests, had the same basic suite of dominant species, but contained more nectarivorous bats than forests. Agroforestry systems also contained bird assemblages that were as abundant, species-rich and diverse as forests; however the species composition of these assemblages was highly modified, with fewer forest dependent species, more open area species and different dominant species. The plantain monocultures had highly modified and depauperate assemblages of both birds and bats. Across land uses, bird diversity and species richness were more closely correlated with the structural and floristic characteristics than were bats, suggesting potential taxon-specific responses to different land uses. Our results indicate that diverse cacao and banana agroforestry systems contribute to conservation efforts by serving as habitats to high numbers of bird and bat species, including some, but not all, forest-dependent species and species of known conservation concern. However, because the animal assemblages in agroforestry systems differ from those in forests, the maintenance of forests within the agricultural landscape is critical for conserving intact assemblages at the landscape level.  相似文献   

3.
Biodiversity conservation in cocoa production landscapes: an overview   总被引:4,自引:0,他引:4  
Cocoa agroforests that retain a floristically diverse and structurally complex shade canopy have the potential to harbour significant levels of biodiversity, yet few studies have documented the plant and animal species occurring within these systems or within landscapes dominated by cocoa production. In this special issue, we bring together nine studies from Latin America, Africa and Asia that document the contribution of cocoa agroforestry systems to biodiversity conservation, and explore how the design, management and location of these systems within the broader landscape influence their value as habitats, resources and biological corridors. Tree diversity within the cocoa production systems is variable, depending on management, cultural differences, location and farm history, among other factors. Animal diversity is typically highest in those cocoa agroforests that have high plant diversity, structurally complex canopies, and abundant surrounding forest cover. In general, both plant and animal diversity within cocoa agroforests is greater than those of other agricultural land uses, but lower than in the original forest habitat. There are several emerging threats to biodiversity conservation within cocoa production landscapes, including the loss of remaining forest cover, the simplification of cocoa shade canopies and the conversion of cocoa agroforestry systems to other agricultural land uses with lower biodiversity value. To counter these threats and conserve biodiversity over the long-term, land management should focus on conserving native forest habitat within cocoa production landscapes, maintaining or restoring floristically diverse and structurally complex shade canopies within cocoa agroforests, and retaining other types of on-farm tree cover to enhance landscape connectivity and habitat availability.  相似文献   

4.
Theobroma cacao plantings, when managed under the shade of rainforest trees, provide habitat for many resident and migratory bird species. We compared the bird diversity and community structure in organic cacao farms and nearby forest fragments throughout mainland Bocas del Toro, Panama. We used this dataset to ask the following questions: (1) How do bird communities using cacao habitat compare to communities of nearby forest fragments? (2) To what extent do Northern migratory birds use shaded cacao farms, and do communities of resident birds shift their abundances in cacao farms seasonally? (3) Do small scale changes in shade management of cacao farms affect bird diversity? Using fixed radius point counts and additional observations, we recorded 234 landbird species, with 102 species that were observed in both cacao and forest fragments, 86 species that were only observed in cacao farms, and 46 species that were restricted to forest fragments. Cacao farms were rich in canopy and edge species such as tanagers, flycatchers and migratory warblers, but understory insectivores were nearly absent from cacao farms. We observed 27 migratory species, with 18 species in cacao farms only, two species in forest only, and seven species that occurred in both habitats. In cacao farms, the diversity of birds was significantly greater where there was less intensive management of the canopy shade trees. Shade tree species richness was most important for explaining variance in bird diversity. Our study shows that shaded cacao farms in western Panama provide habitat for a wide variety of resident and migratory bird species. Considering current land use trends in the region, we suggest that action must be taken to prevent conversion away from shaded cacao farms to land uses with lower biodiversity conservation value.  相似文献   

5.
Abstract.  1. Intensive agricultural practices drive biodiversity loss with potentially drastic consequences for ecosystem services. To advance conservation and production goals, agricultural practices should be compatible with biodiversity. Traditional or less intensive systems (i.e. with fewer agrochemicals, less mechanisation, more crop species) such as shaded coffee and cacao agroforests are highlighted for their ability to provide a refuge for biodiversity and may also enhance certain ecosystem functions (i.e. predation).
2. Ants are an important predator group in tropical agroforestry systems. Generally, ant biodiversity declines with coffee and cacao intensification yet the literature lacks a summary of the known mechanisms for ant declines and how this diversity loss may affect the role of ants as predators.
3. Here, how shaded coffee and cacao agroforestry systems protect biodiversity and may preserve related ecosystem functions is discussed in the context of ants as predators. Specifically, the relationships between biodiversity and predation, links between agriculture and conservation, patterns and mechanisms for ant diversity loss with agricultural intensification, importance of ants as control agents of pests and fungal diseases, and whether ant diversity may influence the functional role of ants as predators are addressed. Furthermore, because of the importance of homopteran-tending by ants in the ecological and agricultural literature, as well as to the success of ants as predators, the costs and benefits of promoting ants in agroforests are discussed.
4. Especially where the diversity of ants and other predators is high, as in traditional agroforestry systems, both agroecosystem function and conservation goals will be advanced by biodiversity protection.  相似文献   

6.
Agroforestry: a refuge for tropical biodiversity?   总被引:1,自引:0,他引:1  
As rates of deforestation continue to rise in many parts of the tropics, the international conservation community is faced with the challenge of finding approaches which can reduce deforestation and provide rural livelihoods in addition to conserving biodiversity. Much of modern-day conservation is motivated by a desire to conserve 'pristine nature' in protected areas, while there is growing recognition of the long-term human involvement in forest dynamics and of the importance of conservation outside protected areas. Agroforestry -- intentional management of shade trees with agricultural crops -- has the potential for providing habitats outside formally protected land, connecting nature reserves and alleviating resource-use pressure on conservation areas. Here we examine the role of agroforestry systems in maintaining species diversity and conclude that these systems can play an important role in biodiversity conservation in human-dominated landscapes.  相似文献   

7.
Little is known about how tropical land-use systems contribute to the conservation of functionally important insect groups, including dung beetles. In a study at the margin of Lore Lindu National Park (a biodiversity hotspot in Central Sulawesi, Indonesia) dung-beetle communities were sampled in natural forest, young secondary forest, agroforestry systems (cacao plantations with shade trees) and annual cultures (maize fields), each with four replicates (n = 16 sites). At each site we used 10 pitfall traps, baited with cattle dung, along a 100 m transect for six 3-day periods. The number of trapped specimens and species richness at the natural forest sites was higher than in all land-use systems, which did not significantly differ. Each land-use system contained, on average, 75% of the species richness of the natural forest, thereby indicating their importance for conservation. However, a two-dimensional scaling plot based on NESS indices (m = 6) indicated distinct dung beetle communities for both forest types, while agroforestry systems and annual cultures exhibited a pronounced overlap. Mean body size of dung beetles was not significantly influenced by land-use intensity. Five of the six most abundant dung beetle species were recorded in all habitats, whereas the abundance of five other species was significantly related to habitat type. Mean local abundance and number of occupied sites were closely correlated, further indicating little habitat specialisation. The low dung beetle diversity (total of 18 recorded species) may be due to the absence of larger mammals in Sulawesi during historical times, even though Sulawesi is the largest island of Wallacea. In conclusion, the dung beetle fauna of the lower montane forest zone in Central Sulawesi appears to be relatively robust to man-made habitat changes and the majority of species did not exhibit strong habitat preferences.  相似文献   

8.
Emergent trees may have an influence on the volume and the spatial distribution of water input into agroforestry stands and may thus affect water availability for the main crops. Our goal was to analyze the influence of such trees on rainfall distribution in a cacao agroforest area in the rainforest margin zone of Central Sulawesi, Indonesia. The emergent trees studied belong to the species Bischofia javanica (Phyllanthaceae) and were 15 m high remnants from the natural forest. A set of 96 throughfall gauges was systematically distributed underneath canopies of cacao only, and underneath canopies of cacao plus emergent trees (cacao plus trees). From an earlier study we knew that stemflow can safely be estimated with less than 1% of gross precipitation (Pg).  相似文献   

9.
Cacao agroforestry have been considered as biodiversity‐friendly farming practices by maintaining habitats for a high diversity of species in tropical landscapes. However, little information is available to evaluate whether this agrosystem can maintain functional diversity, given that agricultural changes can affect the functional components, but not the taxonomic one (e.g., species richness). Thus, considering functional traits improve the understanding of the agricultural impacts on biodiversity. Here, we measured functional diversity (functional richness‐FD, functional evenness‐FEve, and functional divergence‐Rao) and taxonomic diversity (species richness and Simpson index) to evaluate changes of bird diversity in cacao agroforestry in comparison with nearby mature forests (old‐growth forests) in the Brazilian Atlantic Forest. We used data from two landscapes with constraining areas of mature forest (49% Una and 4.8% Ilhéus) and cacao agroforestry cover (6% and 82%, respectively). To remove any bias of species richness and to evaluate assembly processes (functional overdispersion or clustering), all functional indices were adjusted using null models. Our analyses considered the entire community, as well as separately for forest specialists, habitat generalists, and birds that contribute to seed dispersal (frugivores/granivores) or invertebrate removal (insectivores). Our findings showed that small cacao agroforestry in the forested landscape sustains functional diversity (FD and FEve) as diverse as nearby forests when considering the entire community, forest specialist, and habitat generalists. However, we observed declines for frugivores/granivores and insectivores (FD and Rao). These responses of bird communities differed from those observed by taxonomic diversity, suggesting that even species‐rich communities in agroforestry may capture lower functional diversity. Furthermore, communities in both landscapes showed either functional clustering or neutral processes as the main driver of functional assembly. Functional clustering may indicate that local conditions and resources were changed or lost, while neutral assemblies may reveal high functional redundancy at the landscape scale. In Ilhéus, the neutral assembly predominance suggests an effect of functional homogenization between habitats. Thus, the conservation value of cacao agroforestry to harbor species‐rich communities and ecosystem functions relies on smallholder production with reduced farm management in a forested landscape. Finally, we emphasize that seed dispersers and insectivores should be the priority conservation targets in cacao systems.  相似文献   

10.
The environmental services that agroforestry practices can provide, and especially their potential contribution to the conservation of biodiversity, have only recently attracted wider attention among agroforestry and conservation scientists. This new view is consistent with the ecosystem approach to natural resource management advocated by the Convention on Biological Diversity. This collection of six papers, which is based on a Workshop held in June–July 2004, brings together studies of biodiversity impacts of traditional agroforestry practices from Central and South America, Africa and Asia. The contributions highlight the considerable potential of traditional agroforestry practices to support biodiversity conservation, but also show their limits. These include the importance of sufficient areas of natural habitat and of appropriate hunting regulations for maintaining high levels of biodiversity in agroforestry land use mosaics, as well as the critical role of markets for tree products and of a favourable policy environment for agroforestry land uses. In combination the case studies suggest that maintaining diversity in approaches to management of agroforestry systems, along with a pragmatic, undogmatic view on natural resource management, will provide the widest range of options for adapting to changing land use conditions.  相似文献   

11.
Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.  相似文献   

12.
 Neotropical tree crops are affected by a combination of biological and human factors that complicate the study of genetic diversity and crop evolution. Genetic diversity and relationships among southern Mexican populations and horticultural collections of Theobroma cacao (chocolate, cocoa, cacao) are examined in light of the agricultural practices of the Maya. Collections of cacao were obtained from the extremes of its geographic range including archeological sites in southern Mexico where cacao was first domesticated. Genetic diversity was assayed by 57 informative random amplified polymorphic DNA (RAPD) marker loci. A unique sample of the total diversity found in this study exists in the southern Mexican populations. These populations are significantly different from all other cacao with regards to their profile of RAPD bands, including the ‘criollo’ variety, their morphological and geographical group. A population of cacao found in a sinkhole (cenote) in northern Yucatan with genetic affinities to populations in Chiapas suggests the Maya maintained plants far away from their native habitat. This finding concurs with known agroforestry practices of the Maya. Modern efforts to increase germplasm of tropical tree crops such as cacao should carefully examine archeological sites where genetic diversity, either deliberately or by chance, was collected and maintained by ancient cultures. Received: 21 May 1997 / Accepted: 9 October 1997  相似文献   

13.
Shifting cultivation systems have been blamed as the primary cause of tropical deforestation and are being transformed through various forms of conservation and development policies and through the emergence of new markets for cash crops. Here, we analyze the outcomes of different policies on land use/land cover change (LUCC) in a traditional, shifting cultivation landscape in the Atlantic Forest (Brazil), one of the world’s top biodiversity hotspots. We also investigate the impacts of those policies on the environment and local livelihoods in Quilombola communities, which are formed by descendants of former Maroon colonies. Our findings show that conservation and social policies have had mixed effects both on the conservation of the Atlantic Forest and on the livelihoods of the Quilombola. We conclude that future interventions in the region need to build on the new, functional links between sustainable livelihoods and biodiversity, where less restrictive state policies leave room for new opportunities in self-organization and innovation.  相似文献   

14.
Allelopathic Interactions in Agroforestry Systems   总被引:1,自引:0,他引:1  
Agroforestry is a modern tool to develop sustainable land use and to increase food production by growing woody species (trees, shrubs, palms, bamboos, etc.) with agricultural crops and/or animals in some form of spatial arrangement or temporal sequence. Because these species co-exist with the agricultural crops, their allelopathic compatibility may be crucial to determine the success of an agroforestry system. A survey of the available information reveals that most of the agroforestry species (AF species) have negative allelopathic effects on food and fodder crops. Therefore, it is desirable to do further research in this direction so that AF species with no or positive allelopathic effects on the companion crops may be promoted for agroforestry programs. As AF species remain a part of the agroecosystem for a longer period, and most of them produce a large amount of leaves and litter, their allelochemicals may play an important role in developing an eco-friendly pest management strategy. Besides these generally studied aspects of allelopathy, some comparatively newer aspects of research have been identified, such as evaluation of qualitative yield of agroforestry systems, selective behavior of the allelochemicals, effect on soil quality, and the role of tree allelochemicals in animal and human nutrition. If given due consideration, allelopathy could play a pivotal role in conservation of the highly threatened environment, biodiversity, natural resource base, and making agriculture more sustainable through broadening the scope of agroforestry.  相似文献   

15.
Tree root systems may improve soil fertility through carbon inputs, uptake of leachable nutrients and maintenance of soil biomass, but can at the same time reduce crop yields by competition for water and nutrients. Quantitative information about the positive and negative effects of tree roots and their changes in space and time are necessary for the optimization of agroforestry associations. An alley cropping experiment was layed out as a randomized complete block design on a Plinthic Lixisol/Ferralic Cambisol with Gliricidia sepium hedgerows at 5 m distance, including a sole cropping control. The development of root systems was monitored by sequential soil coring (eight samplings) during one year, with maize and groundnut as crops. Additional information is presented from a single sampling for rice during the foregoing year. Pronounced fluctuations of live root length density indicated an important variability in the nutrient and water uptake capacity of the vegetation. At low total root length density, the hedgerows affected the root development in the agroforestry plots directly by the presence of their root systems. At high root length density, they affected root development mainly by improving crop root growth and influencing the composition of the spontaneous vegetation. The root length density of the hedgerows was too low to compete with the crops for soil resources. The hedgerows tended to increase root length densities in the subsoil when few roots were present, thus possibly reducing the risk of nutrient leaching. However, the length density of the perennial root systems decreased during the cropping season, presumably as an effect of repeated pruning, and attained minimum values almost at the same time as the crops. Trees with denser root systems which are less frequently pruned may be more efficient in achieving closer nutrient cycles, though at the cost of higher root competition with crops.  相似文献   

16.
Deforestation is proceeding at alarming rates in the Central American Republic of Panama. This is leading to high losses of biodiversity, local wood shortages, increased erosion, and the sedimentation of water bodies. One of the principal causes of deforestation is the expansion of the agricultural frontier through extensive shifting cultivation systems. These land use systems are becoming increasingly unsustainable as populations increase and the amount of agricultural land available declines, and are often associated with low crop productivity, and reduced soil fertility. Agroforestry, or the association of trees with crops and livestock, has the potential of providing both socio-economic and ecological advantages to smallholders. While the number of agroforestry projects has increased dramatically over the past two decades in Panama, there is little information on the impacts these projects have had. This review provides a brief history of agroforestry in Panama, and outlines the current projects underway. In addition, the main factors impeding the increased adoption of agroforestry are examined, and recommendations are provided.  相似文献   

17.
Tropical secondary forest and agroforestry systems have been identified as important refuges for the local species diversity of birds and other animal groups, but little is known about the importance of these systems for terrestrial herbs. In particular, few studies report how the conversion from tropical forest to technified cacao plantation affects the species richness and the community structure of herbs. We conducted surveys in 43 cacao plantations along the border of the Lore Lindu National Park in Central Sulawesi, ranging from agroforests to technified cacao, categorizing the plantations as rustic cacao, planted shade cacao, and technified cacao. We recorded 91 herb species. Of the 74 species determined to species level, 21 were also found in natural forests, while 53 were recorded only in agricultural habitats. Araceae was the most forest‐dependent plant family while Asteraceae included the highest number of nonforest species. Overall, the presence of forest species was confined to moderately intensively managed rustic and planted shaded plantations. Distance from the forest, which has been identified as a crucial parameter for the diversity and composition of other taxa in cacao agroforests, only played a minimal role for herbs. Our study suggests that native forest herbs maybe more vulnerable to forest conversion than animal groups. The intensification of cacao plantation management increases the presence of weedy species to the detriment of native forest species.  相似文献   

18.
Swidden agriculture, once the dominant form of land use throughout the uplands and much of the lowlands of Southeast Asia, is being replaced by other land uses. While change and adaptation are inherent to swiddening, the current rapid and widespread transitions are unprecedented. In this paper we review some recent findings on changes in biodiversity, especially plant diversity at various scales, as swidden farming is replaced by other land uses. We focus particularly on two areas of Southeast Asia: northern Thailand and West Kalimantan. We examine actual and potential changes in the diversity of crops that characterize regional swidden systems, as well as that of the spontaneously occurring plants that appear in swidden fields and fallows. Severe declines in plant diversity have been observed in most areas and at most spatial scales when swidden is replaced by permanent land use systems. However, shifts away from swidden agriculture do not invariably result in drastic declines or losses of biological diversity, but may maintain or even enhance it, particularly at finer spatial scales. We suggest that further research is necessary to understand the effects of swidden transitions on biodiversity.  相似文献   

19.
In Brazil, cacao is mostly planted beneath shade trees. The diversity of shade trees varies from monospecific to highly diverse canopies, characteristic of pristine Atlantic Forest. This study evaluates the relationships between family richness of Hymenoptera-Parasitica and Chrysidoidea, and tree species richness and density, the species richness of herbaceous understorey, and the area and age of the cacao agroforestry system. We sampled 16 cacao agroforestry systems, with canopy diversity ranging from one to 22 tree species per hectare, in three seasons: summer (March), winter (August) and spring (November). Parasitoids were sampled using eight Malaise-Townes traps per site. Tree species richness and density were enumerated within 1 ha at each site, and herbaceous plant species richness was calculated in eight 1 m2 plots, within the hectare. The number of parasitoid families increased with tree species richness and density in spring and summer, but decreased in winter. Neither species richness of herbaceous plants nor area and age of the system affected parasitoid family richness. We suggest that the increase of parasitoid diversity with tree species richness and density in warmer seasons reflects increasing heterogeneity and availability of resources. The decrease in parasitoid family number with tree density in winter may be due to local impoverishment of resources, leading to parasitoid emigration to neighbouring forest remnants. This result implies that a higher diversity of shade trees will help to maintain high parasitoid levels and, in consequence, higher levels of natural enemies of cacao pests, particularly in the warmer seasons. This prediction is borne out in the experience of cacao producers. The proper management of shade tree diversity will play a vital role in maintaining the sustainability of cacao agroforestry production systems in the tropics and, concurrently, will maintain high biodiversity values in these locations.  相似文献   

20.
Shifting cultivation is a widespread practice in tropical forested areas that policy makers often regard as the major cause of forest degradation. Secondary fallow forests regrowing after shifting cultivation are generally not viewed as suitable for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co‐benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号