首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semi-purified dog kidney Na+,K+-ATPase cross-linked with ovalbumin was used in batch-wise affinity chromatography for the detection of endogenous Na+,K+-ATPase inhibitor in human plasma and urine. Ammonium acetate 1 M washed off the endogenous inhibitor from the immobilized enzyme. The inhibitory activity of the eluate from hypertensive plasma and urine was significantly higher (p less than 0.0025, n = 5 and p less than 0.005, n = 6 respectively) than that of normotensive. This latter was correlated with the ability of plasma from the same subjects to compete with ouabain binding to erythrocytes. Plasma and urine extracts inhibited the activity of Na+, K+-ATPase in a dose-dependent manner as ouabain does and were shown to contain 3 or 4 active compounds by high pressure liquid chromatography. The activity of some of these compounds was lost after peptidase treatment. These data support the heterogeneity of endogenous inhibitors of Na+,K+-ATPase activity in plasma and urine.  相似文献   

2.
Effects of Cold Periods on the Stimulus-Response System of Phycomyces   总被引:1,自引:0,他引:1  
The interaction between Na transfer and alanine transfer across the mucosal border of rabbit ileum has been studied further by examining the effect of alanine on Na movement. Studies on strips of mucosa treated with ouabain showed that net Na movements against a Na concentration difference could be caused by a concentration difference of alanine. Na extrusion from mucosal cells was demonstrated when cellular alanine concentration exceeded that in the external medium. Conversely, the cells took up Na against a concentration difference when external alanine concentration was greater than cellular concentration. Unidirectional Na efflux from the cells toward the mucosal solution was increased by loading the cells with alanine. The relation between the increment in Na efflux and alanine efflux was approximately that predicted by the model of Curran et al. (reference 2) for the Na-alanine interaction at the mucosal border of the cells. The results offer further indication that the transport system is reversible and symmetrical.  相似文献   

3.
It was shown that the specific inhibitors of Na+, K(+)-ATPase ouabain and marinobufagenin increased the contraction of an isolated rat diaphragm (positive inotropic effect) by up to approximately 15% in a dose-dependent manner with EC50 = 1.2 +/- 0.3 and 0.3 +/- 0.1 nM, respectively. The results indicate the involvement of the ouabain-sensitive alpha 2 isoform of Na+, K(+)-ATPase. The analysis of ouabain-resting membrane potential dose-response relationships in the presence and absence of hyperpolarizing concentration of acetylcholine (100 nM) suggests the existence of two pools of alpha 2 Na+, K(+)-ATPase with different affinities for ouabain. The pool with a higher ouabain affinity is involved in the hyperpolarizing effect of acetylcholine and, presumably, in the positive inotropic effect of ouabain, which might be a mechanism of regulation of muscle efficiency by circulating endogenous inhibitors of Na+, K(+)-ATPase.  相似文献   

4.
The interaction between the nicotinic acetylcholine receptor and Na+,K(+)-ATPase described previously was further studied in isolated rat diaphragm and in a membrane preparation of Torpedo californica electric organ. Three specific agonists of the nicotinic receptor: acetylcholine, nicotine and carbamylcholine (100 nmol/L each), all hyperpolarized the non-synaptic membranes of muscle fibers by up to 4 mV. Competitive antagonists of nicotinic acetylcholine receptor, d-tubocurarine (2 mcmol/L) or alpha-bungarotoxin (5 nmol/L) completely blocked the acetylcholine-induced hyperpolarization indicating that the effect requires binding of the agonists to their specific sites. The noncompetitive antagonist, proadifen (5 mcmol/L), exerted no effect on the amplitude of hyperpolarized but decreased K0.5 for this effect from 28.3 +/- 3.6 nmol/L to 7.1 +/- 2.3 nmol/L. Involvement of the Na+,K(+)-ATPase was suggested by data demonstrating that three specific Na+,K(+)-ATPase inhibitors: ouabain, digoxin or marinobufagenin (100 nmol/L each), all inhibit the hyperpolarizing effect of acetylcholine. Acetylcholine did not affectation either the catalytic activity of the Na+,K(+)-ATPase purified from sheep kidney or the transport activity of the Na+,K(+)-ATPase in the rat erythrocytes, i. e. in preparations not containing acetylcholine receptors. Hence, acetylcholine does not directly affect the Na+,K(+)-ATPase. In a Torpedo membrane preparation, ouabain (< or = 100 nmol/L) increased the binding of the fluorescent ligand: Dansyl-C6-choline (DCC). No ouabain effect was observed either when the agonist binding sites of the receptor were occupied by 2 mmol/L carbamylcholine, or in the absence Mg2+, when the binding of ouabain to the Na+,K(+)-ATPase is negligible. These results indicate that ouabain only affects specific DCC binding and only when bound to the Na+,K(+)-ATPase. The data obtained suggest that, in two different systems, the interaction between the nicotinic acetylcholine receptor and the Na+,K(+)-ATPase specifically involve the ligand binding sites of these two proteins.  相似文献   

5.
Effect of Inhibitors on Alanine Transport in Isolated Rabbit Ileum   总被引:4,自引:4,他引:0  
The effects of metabolic inhibitors and ouabain on alanine transport across rabbit ileum, in vitro, have been investigated. Net transport of alanine and Na across short-circuited segments of ileum is virtually abolished by cyanide, 2,4-dinitrophenol, iodoacetate, and ouabain. However, these inhibitors do not markedly depress alanine influx from the mucosal solution, across the brush border, into the intestinal epithelium, and they do not significantly affect the Na dependence of this entry process. The results of this investigation indicate that: (a) the Na dependence of alanine influx does not reflect a mechanism in which the sole function of Na is to link metabolic energy directly to the influx process; and (b) the inhibition of net alanine transport across intestine is, in part, the result of an increased rate coefficient for alanine efflux out of the cell across the brush border. Although these findings do not exclude a direct link between metabolic energy and alanine efflux, the increased efflux may be the result of the increased intracellular Na concentration in the presence of these inhibitors. The results of these studies are qualitatively consistent with a model for alanine transport across the brush border which does not include a direct link to metabolic energy.  相似文献   

6.
Ouabain-binding and phosphorylation of (Na+ mk+)-ATPase (EC 3.6.1.3) of the plasma membranes from kidney were investigated after treatment with N-ethylmaleimide or oligomycin. Either of these inhibitors brought about the following changes: the phosphoenzyme, formed in the presence of Na+, Mg2+ and ATP became essentially insensitive to splitting by K+ but was split by ADP. One mole of this ADP-sensitive phosphoenzyme bound one mole of ouabain but the enzyme-ouabain complex was less stable than in the native enzyme primarily because the rate of its dissociation increased. Ouabain was bound to the ADP-sensitive phosphoenzyme in the presence of Mg2+ alone and addition of inorganic phosphate enhanced both the rate of formation and the steady-state level of the enzyme-ouabain complex. The inhibitors did not affect the properties of this second type of complex. Both in the native enzyme and in the enzyme treated with the two inhibitors inorganic phosphate enhanced ouabain binding by phosphorylating the active center of the enzyme as shown (a) by mapping the labeled peptides from the enzyme after peptic digestion, (b) by inhibition of this phosphorylation with Na+ and (c) by the 1:1 stoichiometric relation between this phosphorylation and the amount of bound ouabain. Unlike the phosphoenzyme, the binding of ouabain remained sensitive to K+ in the enzyme treated with the inhibitors. K+ slowed ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding than to stimulate dephosphorylation. This finding is interpreted as being an indication of separate sites for K+ on the enzyme: a site(s) with high K+-affinity which stimulates dephosphorylation, another site(s) with moderate K+-affinity which inhibits ouabain-binding. Inhibitors may enhance formation of the ADP-sensitive phosphoenzyme by blocking interaction between K+ and the site(s) with high affinity.  相似文献   

7.
A preparative purification of endogenous inhibitors of the Na+/K+-ATPase has been carried out from bovine blood. Dried plasma was deproteinized, hexane-extracted and desalted, followed by further purification through a series of reverse-phase HPLC fractionations. Fractions active in inhibiting Na+/K+-ATPase activity and displacing ouabain were collected and purified further. By comparison with ouabain, the final extract was found to have a steeper concentration-effect curve in the inhibition of Na+/K+-ATPase. In displacement of [3H]ouabain, the extract had again a steeper concentration-effect curve than does ouabain, and in addition it enhanced ouabain binding at high dilutions. These properties are indicative of nonspecific interactions with the Na+/K+-ATPase. The active fraction was identified by TLC, HPLC, NMR, GLC and GC-MS, to be a mixture of three unesterified fatty acids, mainly oleic acid (72% of the total) and three saturated hydrocarbons. The assignment of structures was corroborated by comparison with authentic samples.  相似文献   

8.
The short-term protein-synthesis-independent stimulation of alanine transport in hepatocytes was further investigated. Cyclic AMP increased the Vmax. of alanine transport. Amino acid transport via systems A, ASC and N was stimulated. A good correlation was found between the initial rate of transport and the cell membrane potential as calculated from the distribution of Cl-. Cyclic AMP increased the rate of alanine transport, stimulated Na+/K+ ATPase (Na+/K+-transporting ATPase) activity and caused membrane hyperpolarization. The time courses and cyclic AMP dose-dependencies of all three effects were similar. Ouabain abolished the effect of cyclic AMP on Cl- distribution and on transport of alanine. The effect of cyclic AMP on alanine transport and Cl- distribution was mimicked by the antibiotic nigericin; the effect of nigericin was also abolished by ouabain. It is concluded that the effect of cyclic AMP on transport is mediated via membrane hyperpolarization. It is suggested that the primary action of cyclic AMP is to increase the activity of an electroneutral Na+/K+-exchange system in the liver cell plasma membrane, thus hyperpolarizing the membrane by stimulating the electrogenic Na+/K+ ATPase.  相似文献   

9.
Ouabain uptake was studied on isolated rat hepatocytes. Hepatocellular uptake of the glycoside is saturable (Km = 348 mumol/l, Vmax = 1.4 nmol/mg cell protein per min), energy dependent and accumulative. Concentrative ouabain uptake is not present on permeable hepatocytes, Ehrlich ascites tumor cells and AS-30D ascites hepatoma cells. There is no correlation between ouabain binding to rat liver (Na+ + K+)ATPase and ouabain uptake into isolated rat hepatocytes. While ouabain uptake is competitively inhibited by cevadine, binding to (Na+ + K+)-ATPase is not affected by the alkaloid. Although the affinities of digitoxin and ouabain to (Na+ + K+)-ATPase are similar, digitoxin is 10000-times more potent in inhibiting [3H]ouabain uptake as compared to ouabain. That binding to (Na+ + K+)-ATPase appears to be no precondition for ouabain uptake was also found in experiments with plasmamembranes derived from Ehrlich ascites tumor cells and AS-30D hepatoma cells. While tumor cell (Na+ + K+)-ATPase is ouabain sensitive, the intact cells are transport deficient. Hepatic ouabain uptake might be related to bile acid transport. Several inhibitors of the bile acid uptake system also inhibit ouabain uptake.  相似文献   

10.
The effects of external alkali metal ions on the rate of ouabain binding and on the rate of the Na-K pump were examined in human red blood cells. In Na-containing solutions, K, Cs, and Li decreased the rate of ouabain binding. For K and Cs, the kinetics of this effect were similar to those for their activation of the pump. In Na-free (choline- substituted) solutions the rate of ouabain binding was decreased by K whereas it was promoted by Cs and Li. External Na increased the rate of ouabain binding whether or not external K was present, and the kinetics of this effect were not the same as those for inhibition of the pump by Na. These findings are interpreted to mean that not only do the cations affect ouabain binding at the external loading sites on the pump from which ions are translocated inward, but that there are additional sites on the external aspect of the pump at which cations can promote ouabain binding, and that these sites can be occupied by Li, Na, and Cs. It is postulated that these latter sites are those from which Na is discharged after outward translocation by the pump.  相似文献   

11.
The candidateship of unsaturated fatty acids as endogenous ouabain-like factors was studied. Binding of the artificial ligand vanadate at the intracellular phosphorylation epitope of membrane-bound Na+/K+-ATPase was unaffected by linoleic and arachidonic acid. In the (Mg2+ + Pi)-facilitated system for ouabain binding they were characterized as noncompetitive inhibitors of cardiac glycoside binding, however. The ouabain binding capacity as well as the affinity decreased and the ouabain dissociation rate was accelerated by fatty acids. In the presence of vanadate for facilitation of ouabain binding an increase in ouabain affinity was seen. It is concluded that elementary criteria for the characterization of unsaturated fatty acids as ouabain-like factors are not fulfilled. The ratio between E2-subconformations of Na+/K+-ATPase with different ouabain affinities may be changed by incorporation of fatty acids in the lipid membrane.  相似文献   

12.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

13.
The side-dependent effects of internal and external Na and K on the ouabain binding rate, as promoted by inside MgATP, has been evaluated utilizing reconstituted human red blood cell ghosts. Such ghost systems provide the situation where [Na]i, [K]i, [Na]o, and [K]o can each be varied under conditions in which the others are either absent or fixed at constant concentrations. It was found that, in the presence of Ko, increasing either [Na]i or [K]i resulted in decreasing the rate at which ouabain was bound. Changes in [Na]i or [K]i in the absence of Ko were without effect on the ouabain binding rate. Thus, the ouabain binding rate was found to vary inversely with the rate of Na:K and K:K exchange but was independent of the rate of Na:Na exchange. The effect of Ko in antagonizing ouabain binding, as well as the influence of Nao on this interaction, were found to require the presence of either Nai or Ki. The results are interpreted in terms of a model relating the availability of the ouabain binding site to different conformational states of the pump complex. Differences were observed in the ouabain binding properties of red cell ghosts compared to microsomal preparations but it is not known whether the basis for the differences resides in the different preparations studied or in the lack of control of sidedness in the microsomal systems.  相似文献   

14.
The effects of micromolar concentrations of the ionophore X-537A (RO 2-2985) were studied using isolated preparations of the rat tail artery. The ionophore causes complete release of catecholamines from adrenergic nerves, which is the sole cause of the transient contractile response. The amines are released by a nonexocytotic process which seems to be related to the ability of X-537A to act as an efficient transmembrane carrier of Na+, k+, and H+. The ionophore also causes an almost complete and irreversible loss of the cocaine-sensitive component of metaraminol uptake by the tissue. X-537A dissipates the transmembrane concentration gradients of Na and K in the smooth muscle component of the preparation. This effect is unrelated to the release of endogenous catecholamines, and it can also be observed after the Na pump has been inhibited with ouabain. It is fully reversible, though not readily, and it can be induced repeatedly. In catecholamine-depleted strips, X-537A dissipates the transmembrane Na+ and K+ gradients without causing any change in tension. Stimulation of the rate of O2 consumption by X-537A in catecholamine-depleted tissue is reversible, and it is unaffected by ouabain and (or) removal of external Ca2+.  相似文献   

15.
The effects of iontophoretically applied Na+-, K+-dependent adenosinetriphosphatase (Na+,K+-ATPase) (EC 3.6.1.3) inhibitors (ouabain, digitoxin, digitoxigenin, strophanthin K, strophanthidin, thevetin A and B, ethacrynate, and harmaline) on the depression of rat cerebral cortical neurones by noradrenaline, 5-hydroxytryptamine, and histamine have been studied. The inhibitors antagonized depressions of spontaneously active neurones evoked by these amines, but not those evoked by gamma-aminobutyric acid, adenosine, adenosine 5'-monophosphate, or calcium. The antagonistic potencies of the various inhibitors appeared to be proportional to their known potencies as inhibitors of Na+, K+-ATPase. The data therefore support the hypothesis that amines depress central neurones by activating an electrogenic sodium pump.  相似文献   

16.
A microsomal fraction rich in (Na+ + K+)ATPase activity has been isolated from the outer medulla of pig kidney. The ability of this preparation to form phosphoenzyme on incubation with [gamma-32P]ATP and to bind [3H]ouabain was studied when its sulfatide was hydrolyzed by arylsulfatase treatment. The K+-dependent hydrolysis of the Na+-dependent phosphorylated intermediate as well as the ouabain binding were inactivated in direct relation to the breakdown of sulfatide. Both characteristics of the (Na+ + K+)ATPase preparation, lost by arylsulfatase treatment, were partially restored by the sole addition of sulfatide. These experiments indicate that sulfatide may play a role in sodium ion transport either in the conformational transition of the K+-insensitive phosphointermediate, E1P, to the K+-sensitive intermediate, E2P, or in the configuration of the high-affinity binding site for K+ of the E2P form. In addition, this glycolipid may have a specific role in the proteolipidic subunit that binds ouabain.  相似文献   

17.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+ -stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

18.
Our previous studies on cardiac myocytes showed that positive inotropic concentrations of the digitalis drug ouabain activated signaling pathways linked to Na(+)-K(+)-ATPase through Src and epidermal growth factor receptor (EGFR) and led to myocyte hypertrophy. In view of the known involvement of phosphatidylinositol 3-kinase (PI3K)-Akt pathways in cardiac hypertrophy, the aim of the present study was to determine whether these pathways are also linked to cardiac Na(+)-K(+)-ATPase and, if so, to assess their role in ouabain-induced myocyte growth. In a dose- and time-dependent manner, ouabain activated Akt and phosphorylation of its substrates mammalian target of rapamycin and glycogen synthase kinase in neonatal rat cardiac myocytes. Akt activation by ouabain was sensitive to PI3K inhibitors and was also noted in adult myocytes and isolated hearts. Ouabain caused a transient increase of phosphatidylinositol 3,4,5-trisphosphate content of neonatal myocytes, activated class IA, but not class IB, PI3K, and increased coimmunoprecipitation of the alpha-subunit of Na(+)-K(+)-ATPase with the p85 subunit of class IA PI3K. Ouabain-induced activation of ERK1/2 was prevented by Src, EGFR, and MEK inhibitors, but not by PI3K inhibitors. Activation of Akt by ouabain, however, was sensitive to inhibitors of PI3K and Src, but not to inhibitors of EGFR and MEK. Similarly, ouabain-induced myocyte hypertrophy was prevented by PI3K and Src inhibitors, but not by an EGFR inhibitor. These findings 1) establish the linkage of the class IA PI3K-Akt pathway to Na(+)-K(+)-ATPase and the essential role of this linkage to ouabain-induced myocyte hypertrophy and 2) suggest cross talk between these PI3K-Akt pathways and the signaling cascades previously identified to be associated with cardiac Na(+)-K(+)-ATPase.  相似文献   

19.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

20.
Na(+),K(+)-ATPase, a basolateral transporter responsible for tubular reabsorption of Na(+) and for providing the driving force for vectorial transport of various solutes and ions, can also act as a signal transducer in response to the interaction with steroid hormones. At nanomolar concentrations ouabain binding to Na(+),K(+)-ATPase activates a signaling cascade that ultimately regulates several membrane transporters including Na(+),K(+)-ATPase. The present study evaluated the long-term effect of ouabain on Na(+),K(+)-ATPase activity (Na(+) transepithelial flux) and expression in opossum kidney (OK) cells with low (40) and high (80) number of passages in culture, which are known to overexpress Na(+),K(+)-ATPase (Silva et al., 2006, J Membr Biol 212, 163-175). Activation of a signal cascade was evaluated by quantification of ERK1/2 phosphorylation by Western blot. Na(+),K(+)-ATPase activity was determined by electrophysiological techniques and expression by Western blot. Incubation of cells with ouabain induced activation of ERK1/2. Long-term incubation with ouabain induced an increase in Na(+) transepithelial flux and Na(+),K(+)-ATPase expression only in OK cells with 80 passages in culture. This increase was prevented by incubation with inhibitors of MEK1/2 and PI-3K. In conclusion, ouabain-activated signaling cascade mediated by both MEK1/2 and PI-3K is responsible for long-term regulation of Na(+) transepithelial flux in epithelial renal cells. OK cell line with high number of passages is suggested to constitute a particular useful model for the understanding of ouabain-mediated regulation of Na(+) transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号