首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increases in Pi combined with decreases in myoplasmic Ca2+ are believed to cause a significant portion of the decrease in muscular force during fatigue. To investigate this further, we determined the effect of 30 mM Pi on the force-Ca2+ relationship of chemically skinned single muscle fibers at near-physiological temperature (30°C). Fibers isolated from rat soleus (slow) and gastrocnemius (fast) muscle were subjected to a series of solutions with an increasing free Ca2+ concentration in the presence and absence of 30 mM Pi at both low (15°C) and high (30°C) temperature. In slow fibers, 30 mM Pi significantly increased the Ca2+ required to elicit measurable force, referred to as the activation threshold at both low and high temperatures; however, the effect was twofold greater at the higher temperature. In fast fibers, the activation threshold was unaffected by elevating Pi at 15°C but was significantly increased at 30°C. At both low and high temperatures, 30 mM Pi increased the Ca2+ required to elicit half-maximal force (pCa50) in both slow and fast fibers, with the effect of Pi twofold greater at the higher temperature. These data suggest that during fatigue, reductions in the myoplasmic Ca2+ and increases in Pi act synergistically to reduce muscular force. Consequently, the combined changes in these ions likely account for a greater portion of fatigue than previously predicted based on studies at lower temperatures or high temperatures at saturating Ca2+ levels. force-pCa relationship; phosphate; fatigue  相似文献   

2.
Chemically skinned muscle fibers,prepared from the rat medial gastrocnemius and soleus, were subjectedto four sequential slack tests in Ca2+-activating solutionscontaining 0, 15, 30, and 0 mM added Pi. Pi (15 and 30 mM) had no effect on the unloaded shortening velocity (Vo) of fibers expressing type IIb myosin heavychain (MHC). For fibers expressing type I MHC, 15 mM Pi didnot alter Vo, whereas 30 mM Pireduced Vo to 81 ± 1% of the original 0 mM Pi value. This effect was readily reversible whenPi was lowered back to 0 mM. These results are notcompatible with current cross-bridge models, developed exclusively fromdata obtained from fast fibers, in which Vo isindependent of Pi. The response of the type I fibers at 30 mM Pi is most likely the result of increased internal drag opposing fiber shortening resulting from fiber type-specific effects ofPi on cross bridges, the thin filament, or therate-limiting step of the cross-bridge cycle.

  相似文献   

3.
To find out whether the decrease in muscle performance of isolated mammalian skeletal muscle associated with the increase in temperature toward physiological levels is related to the increase in muscle superoxide (O2) production, O2 released extracellularly by intact isolated rat and mouse extensor digitorum longus (EDL) muscles was measured at 22, 32, and 37°C in Krebs-Ringer solution, and tetanic force was measured in both preparations at 22 and 37°C under the same conditions. The rate of O2 production increased marginally when the temperature was increased from 22 to 32°C, but increased fivefold when the temperature was increased from 22 to 37°C in both rat and mouse preparations. This increase was accompanied by a marked decrease in tetanic force after 30 min incubation at 37°C in both rat and mouse EDL muscles. Tetanic force remained largely depressed after return to 22°C for up to 120 min. The specific maximum Ca2+-activated force measured in mechanically skinned fibers after the temperature treatment was markedly depressed in mouse fibers but was not significantly depressed in rat muscle fibers. The resting membrane and intracellular action potentials were, however, significantly affected by the temperature treatment in the rat fibers. The effects of the temperature treatment on tetanic force, maximum Ca2+-activated force, and membrane potential were largely prevented by 1 mM Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a membrane-permeable superoxide dismutase mimetic, indicating that the increased O2 production at physiological temperatures is largely responsible for the observed depression in tetanic force at 37°C by affecting the contractile apparatus and plasma membrane. intact mammalian muscle; physiological temperature; superoxide; excitation-contraction coupling; maximum Ca2+-activated force; muscle excitability; cytochrome c assay  相似文献   

4.
Mammalian skeletal muscles generate marked amounts of superoxide (O2·) at 37°C, but it is not well understood which is the main source of O2· production in the muscle fibers and how this interferes with muscle function. To answer these questions, O2· production and twitch force responses were measured at 37°C in mechanically skinned muscle fibers of rat extensor digitorum longus (EDL) muscle. In mechanically skinned fibers, the sarcolemma is removed avoiding potential sources of O2· production that are not intrinsically part of the muscle fibers, such as nerve terminals, blood cells, capillaries and other blood vessels in the whole muscle. O2· production was also measured in split single EDL muscle fibers, where part of the sarcolemma remained attached, and small bundles of intact isolated EDL muscle fibers at rest, in the presence and absence of modifiers of mitochondrial function. The results lead to the conclusion that mitochondrial production of O2· accounts for most of the O2· measured intracellularly or extracellularly in skeletal muscle fibers at rest and at 37°C. Muscle fiber excitability at 37°C was greatly improved in the presence of a membrane permeant O2· dismutase mimetic (Tempol), demonstrating a direct link between O2· production in the mitochondria and muscle fiber performance. This implicates mitochondrial O2· production in the down-regulation of skeletal muscle function, thus providing a feedback pathway for communication between mitochondria and plasma membranes that is not directly related to the main function of mitochondria as the power plant of the mammalian muscle cell. excitation-contraction coupling; mechanically skinned fiber; physiological temperature  相似文献   

5.
Inorganic phosphate(Pi) accumulates in the fibers of actively working musclewhere it acts at various sites to modulate contraction. To characterizethe role of Pi as a regulator of the sarcoplasmic reticulum(SR) calcium (Ca2+) release channel, we examined the actionof Pi on purified SR Ca2+ release channels,isolated SR vesicles, and skinned skeletal muscle fibers. In singlechannel studies, addition of Pi to the cis chamberincreased single channel open probability (Po;0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mMPi) by decreasing mean channel closed time; mean channelopen times were unaffected. In contrast, the ATP analog,,-methyleneadenosine 5'-triphosphate (AMP-PCP), enhancedPo by increasing single channel open time anddecreasing channel closed time. Pi stimulation of[3H]ryanodine binding by SR vesicles wassimilar at all concentrations of AMP-PCP, suggesting Pi andadenine nucleotides act via independent sites. In skinned musclefibers, 40 mM Pi enhanced Ca2+-inducedCa2+ release, suggesting an in situ stimulation ofthe release channel by high concentrations of Pi. Ourresults support the hypothesis that Pi may be an importantendogenous modulator of the skeletal muscle SR Ca2+ releasechannel under fatiguing conditions in vivo, acting via a mechanismdistinct from adenine nucleotides.

  相似文献   

6.
Lee, Dae T., Michael M. Toner, William D. McArdle, IoannisS. Vrabas, and Kent B. Pandolf. Thermal and metabolic responses tocold-water immersion at knee, hip, and shoulder levels.J. Appl. Physiol. 82(5):1523-1530, 1997.To examine the effect of cold-water immersion atdifferent depths on thermal and metabolic responses, eight men (25 yrold, 16% body fat) attempted 12 tests: immersed to the knee (K), hip(H), and shoulder (Sh) in 15 and 25°C water during both rest (R) orleg cycling [35% peak oxygen uptake; (E)] for up to 135 min. At 15°C, rectal (Tre)and esophageal temperatures(Tes) between R and E were notdifferent in Sh and H groups (P > 0.05), whereas both in K group were higher during E than R(P < 0.05). At 25°C,Tre was higher(P < 0.05) during E than R at alldepths, whereas Tes during E washigher than during R in H and K groups.Tre remained at control levels inK-E at 15°C, K-E at 25°C, and in H-E groups at 25°C,whereas Tes remained unchanged inK-E at 15°C, in K-R at 15°C, and in all 25°C conditions (P > 0.05). During R and E, themagnitude of Tre change wasgreater (P < 0.05) than themagnitude of Tes change in Sh andH groups, whereas it was not different in the K group(P > 0.05). Total heat flow wasprogressive with water depth. During R at 15 and 25°C, heatproduction was not increased in K and H groups from control level(P > 0.05) but it did increase in Shgroup (P < 0.05). The increase inheat production during E compared with R was smaller(P < 0.05) in Sh (121 ± 7 W/m2 at 15°C and 97 ± 6 W/m2 at 25°C) than in H (156 ± 6 and 126 ± 5 W/m2,respectively) and K groups (155 ± 4 and 165 ± 6 W/m2, respectively). These datasuggest that Tre andTes respond differently duringpartial cold-water immersion. In addition, water levels above knee in15°C and above hip in 25°C cause depression of internal temperatures mainly due to insufficient heat production offsetting heatloss even during light exercise.

  相似文献   

7.
Patch-clampstudies of mammalian skeletal muscleNa+ channels are commonly done atsubphysiological temperatures, usually room temperature. However, atsubphysiological temperatures, mostNa+ channels are inactivated atthe cell resting potential. This study examined the effects oftemperature on fast and slow inactivation ofNa+ channels to determine iftemperature changed the fraction of Na+ channels that were excitableat resting potential. The loose patch voltage clamp recordedNa+ currents(INa) in vitroat 19, 25, 31, and 37°C from the sarcolemma of rat type IIbfast-twitch omohyoid skeletal muscle fibers. Temperature affected thefraction of Na+ channels that wereexcitable at the resting potential. At 19°C, only 30% of channelswere excitable at the resting potential. In contrast, at 37°C, 93%of Na+ channels were excitable atthe resting potential. Temperature did not alter the resting potentialor the voltage dependencies of activation or fast inactivation.INa available atthe resting potential increased with temperature because thesteady-state voltage dependence of slow inactivation shifted in adepolarizing direction with increasing temperature. The membranepotential at which half of the Na+channels were in the slow inactivated state was shifted by +16 mV at37°C compared with 19°C. Consequently, the low availability ofexcitable Na+ channels atsubphysiological temperatures resulted from channels being in the slow,inactivated state at the resting potential.

  相似文献   

8.
During vigorous exercise, Pi concentration levels within the cytoplasm of fast-twitch muscle fibers may reach 30 mM. Cytoplasmic Pi may enter the sarcoplasmic reticulum (SR) and bind to Ca2+ to form a precipitate (CaPi), thus reducing the amount of releasable Ca2+. Using mechanically skinned rat fast-twitch muscle fibers, which retain the normal action potential-mediated Ca2+ release mechanism, we investigated the consequences of Pi exposure on normal excitation-contraction coupling. The total amount of Ca2+ released from the SR by a combined caffeine/low-Mg2+ concentration stimulus was reduced by 20%, and the initial rate of force development slowed after 2-min exposure to 30 mM Pi (with or without the presence creatine phosphate). Peak (50 Hz) tetanic force was also reduced (by 25% and 45% after 10 and 30 mM Pi exposure, respectively). Tetanic force responses produced after 30 mM Pi exposure were nearly identical to those observed in the same fiber after depletion of total SR Ca2+ by 35%. Ca2+ content assays revealed that the total amount of Ca2+ in the SR was not detectably changed by exposure to 30 mM Pi, indicating that Ca2+ had not leaked from the SR but instead formed a precipitate with the Pi, reducing the amount of available Ca2+ for rapid release. These results suggest that CaPi precipitation that occurs within the SR could contribute to the failure of Ca2+ release observed in the later stages of metabolic muscle fatigue. They also demonstrate that the total amount of Ca2+ stored in the SR cannot drop substantially below the normal endogenous level without reducing tetanic force responses. muscle fatigue; excitation-contraction coupling  相似文献   

9.
The purpose of this study was to examine the effect of prolongedbed rest (BR) on the peak isometric force(Po) and unloaded shorteningvelocity (Vo)of single Ca2+-activated musclefibers. Soleus muscle biopsies were obtained from eight adult malesbefore and after 17 days of 6° head-down BR. Chemicallypermeabilized single fiber segments were mounted between a forcetransducer and position motor, activated with saturating levels ofCa2+, and subjected to slacklength steps. Vowas determined by plotting the time for force redevelopment vs. theslack step distance. Gel electrophoresis revealed that 96% of the pre-and 87% of the post-BR fibers studied expressed only the slow type Imyosin heavy chain isoform. Fibers with diameter >100 µm made uponly 14% of this post-BR type I population compared with 33% of thepre-BR type I population. Consequently, the post-BR type I fibers(n = 147) were, on average, 5%smaller in diameter than the pre-BR type I fibers(n = 218) and produced 13% lessabsolute Po. BR had no overalleffect on Po per fibercross-sectional area(Po/CSA), even though halfof the subjects displayed a decline of 9-12% inPo/CSA after BR. Type Ifiber Voincreased by an average of 34% with BR. Although the ratio of myosinlight chain 3 to myosin light chain 2 also rose with BR, there was nocorrelation between this ratio andVo for either thepre- or post-BR fibers. In separate fibers obtained from the originalbiopsies, quantitative electron microscopy revealed a 20-24%decrease in thin filament density, with no change in thick filamentdensity. These results raise the possibility that alterations in thegeometric relationships between thin and thick filaments may be atleast partially responsible for the elevatedVo of the post-BRtype I fibers.

  相似文献   

10.
The repeated elevation of cytosolic Ca2+ concentration ([Ca2+]i) above resting levels during contractile activity has been associated with long-lasting muscle fatigue. The mechanism underlying this fatigue appears to involve elevated [Ca2+]i levels that induce disruption of the excitation-contraction (E-C) coupling process at the triad junction. Unclear, however, are which aspects of the activity-related [Ca2+]i changes are responsible for the deleterious effects, in particular whether they depend primarily on the peak [Ca2+]i reached locally at particular sites or on the temporal summation of the increased [Ca2+] in the cytoplasm as a whole. In this study, we used mechanically skinned fibers from rat extensor digitorum longus muscle, in which the normal E-C coupling process remains intact. The [Ca2+]i was raised either by applying a set elevated [Ca2+] throughout the fiber or by using action potential stimulation to induce the release of sarcoplasmic reticulum Ca2+ by the normal E-C coupling system with or without augmentation by caffeine or buffering with BAPTA. Herein we show that elevating [Ca2+]i in the physiological range of 2–20 µM irreversibly disrupts E-C coupling in a concentration-dependent manner but requires exposure for a relatively long time (1–3 min) to cause substantial uncoupling. The effectiveness of Ca2+ released via the endogenous system in disrupting E-C coupling indicates that the relatively high [Ca2+]i attained close to the release site at the triad junction is a more important factor than the increase in bulk [Ca2+]i. Our results suggest that during prolonged vigorous activity, the many repeated episodes of relatively high triadic [Ca2+] can disrupt E-C coupling and lead to long-lasting fatigue. skeletal muscle; low-frequency fatigue; ryanodine receptor; skinned fiber  相似文献   

11.
ROBSON  M. J. 《Annals of botany》1981,48(3):269-273
Fully light-intercepting simulated swards of S24 perennial ryegrasswere exposed to contrasting environmental conditions in a growthroom for 4 days. Half experienced 20 h days of 120 Wm–2(400–700. nm) and 5 °C, and came to have a WSC (watersoluble carbohydrate) content of 235 mg g–1 and half 4h days of 20 Wm–2 and 25 °C leading to a WSC of 25mg g–1. Their rates of CO2 efflux were monitored at anumber of temperatures during an 8 h dark period; half experiencedincreasing (5–30 °C) and half decreasing (30–5°C) temperatures. The ‘high’ WSC swards hadrespiration rates of 3.7 mg CO2 g–1 (d. wt) h–1at 15 °C, and the ‘low’ swards 0.8 mg CO2 g–1h–1. The order in which the temperatures were experiencedwas immaterial. Even the ‘low’ WSC swards showedno evidence of a respiratory decline during the dark periodthat could be attributed to substrate shortage. The relationshipbetween temperature and CO2 efflux was best represented by logisticcurves. Even so, a Q10 of 2 fitted the data reasonably well,at least up to 20 °C, and has practical advantages wheninterpolating estimated between measured values of respirationin the construction of a carbon balance sheet. Lohum perenne L., ryegrass, respiration, temperature, Q10, soluble carbohydrate content, simulated sward  相似文献   

12.
Plants of six contrasting genotypes of barley were raised fromvernalized (imbibed at 1 °C for 30 d) or non-vernalizedseeds and grown in 12 different controlled environments comprisingfactorial combinations of three photoperiods (10, 13 and 16h d–1), two day temperatures (18 and 28 °C) and twonight temperatures (5 and 13 °C). Except at longer daysfor Athenais or Arabi Abiad, the 28 °C day temperature wasgenerally supra-optimal and delayed awn emergence. At lowertemperatures and in photoperiods shorter than the critical value,PC, which delay awn emergence, the time from sowing to awn emergencefor five of the genotypes conformed to the equation 1/f=a +bT{macron}+cPwhere f is the time to awn emergence (d), T{macron} is meandiurnal temperature (°C), P is photoperiod (h d–1)and a, b and c are genotype-specific constants. In Arabi Abiad,however, significant responses to temperature were not detected.The low temperature pre-treatment of the seeds reduced the subsequenttime to awn emergence in Athenais and the autumn-sown genotypesAger, Arabi Abiad and Gerbel B, especially in longer days, buteither had no effect or tended to delay awn emergence in thespring-sown types Emir and Mona. In the spring-sown types PCwas outside the range investigated (i.e. > 16 h d–1),but in Ager it was approx. 13 h d–1 and in Gerbel B justover 13 h d–1. For plants of Arabi Abiad grown from vernalizedseeds Pc was almost 15 h, but  相似文献   

13.
Skeletal muscle fiber types differ in their contents of total phosphate, which includes inorganic phosphate (Pi) and high-energy organic pools of ATP and phosphocreatine (PCr). At steady state, uptake of Pi into the cell must equal the rate of efflux, which is expected to be a function of intracellular Pi concentration. We measured 32P-labeled Pi uptake rates in different muscle fiber types to determine whether they are proportional to cellular Pi content. Pi uptake rates in isolated, perfused rat hindlimb muscles were linear over time and highest in soleus (2.42 ± 0.17 µmol·g–1·h–1), lower in red gastrocnemius (1.31 ± 0.11 µmol·g–1·h–1), and lowest in white gastrocnemius (0.49 ± 0.06 µmol·g–1·h–1). Reasonably similar rates were obtained in vivo. Pi uptake rates at plasma Pi concentrations of 0.3–1.7 mM confirm that the Pi uptake process is nearly saturated at normal plasma Pi levels. Pi uptake rate correlated with cellular Pi content (r = 0.99) but varied inversely with total phosphate content. Sodium-phosphate cotransporter (PiT-1) protein expression in soleus and red gastrocnemius were similar to each other and seven- to eightfold greater than PiT-1 expression in white gastrocnemius. That the PiT-1 expression pattern did not match the pattern of Pi uptake across fiber types implies that other factors are involved in regulating Pi uptake in skeletal muscle. Furthermore, fractional turnover of the cellular Pi pool (0.67, 0.57, and 0.33 h–1 in soleus, red gastrocnemius, and white gastrocnemius, respectively) varies among fiber types, indicating differential management of intracellular Pi, likely due to differences in resistance to Pi efflux from the fiber. inorganic phosphate; sodium-inorganic phosphate transporters; PiT-2; inorganic phosphate efflux  相似文献   

14.
Williams, Jay H. Contractile apparatus and sarcoplasmicreticulum function: effects of fatigue, recovery, and elevated Ca2+. J. Appl.Physiol. 83(2): 444-450, 1997.This investigationtested the notion that fatiguing stimulation induces intrinsic changes in the contractile apparatus and sarcoplasmic reticulum (SR) and thatthese changes are initiated by elevated intracellularCa2+ concentration([Ca2+]i).Immediately after stimulation of frog semitendinosus muscle, contractile apparatus and SR function were measured. Despite a largedecline in tetanic force (Po),maximal Ca2+-activated force(Fmax) of the contractileapparatus was not significantly altered. However,Ca2+ sensitivity was increased. Inconjunction, the rate constant ofCa2+ uptake by the SR wasdiminished, and the caffeine sensitivity ofCa2+ release was decreased. Duringrecovery, Po, contractileapparatus, and SR function each returned to near-initial levels.Exposure of skinned fibers to 0.5 µM freeCa2+ for 5 min depressed bothFmax andCa2+ sensitivity of thecontractile apparatus. In addition, caffeine sensitivity ofCa2+ release was diminished.Results suggest that fatigue induces intrinsic alterations incontractile apparatus and SR function. Changes in contractile apparatusfunction do not appear to be mediated by increased[Ca2+]i.However, a portion of the change in SRCa2+ release seems to be due toelevated[Ca2+]i.

  相似文献   

15.
Hypoxia (95% N2-5%CO2) elicits an endothelium-independent relaxation(45-80%) in freshly dissected porcine coronary arteries. Pairedartery rings cultured at 37°C in sterile DMEM (pH ~7.4) for 24 h contracted normally to KCl or 1 µM U-46619. However, relaxation inresponse to hypoxia was sharply attenuated compared with control (fresharteries or those stored at 4°C for 24 h). Hypoxicvasorelaxation in organ cultured vessels was reduced at both high andlow stimulation, indicating that both Ca2+-independent andCa2+-dependent components are altered. In contrast,relaxation to G-kinase (sodium nitroprusside) or A-kinase (forskolinand isoproterenol) activation was not significantly affected by organculture. Additionally, there was no difference in relaxation afterwashout of the stimulus, indicating that the inhibition is specific toacute hypoxia-induced relaxation. Simultaneous force and intracellularcalcium concentration ([Ca2+]i) measurementsindicate the reduction in [Ca2+]i concomitantwith hypoxia at low stimulus levels in these tissue is abolished byculture. Our results indicate that organ culture at 37°C specificallyattenuates hypoxic relaxation in vascular smooth muscle by alteringdynamics of [Ca2+]i handling and decreasing aCa2+-independent component of relaxation. Thus organculture can be a novel tool for investigating the mechanisms ofhypoxia-induced vasodilation.

  相似文献   

16.
Sink-limited conditions, defined as treatment with continuousillumination, cause a reduction in the rate of photosyntheticfixation of CO2 in single-rooted leaves of soybean (Glycinemax. Merr. cv. Turunoko). We suggested previously that thisreduction is due to a deactivation of ribulose-1,5-bisphosphatecarboxylase (RuBPcase, E.C. 4.1.1.39 [EC] ) that is caused by a decreasein the level of Pi in the leaves [Sawada et al. (1989) PlantCell Physiol. 30: 691, Sawada et al. (1990) Plant Cell Physiol.31: 697]. In the present study, the mechanism of regulationof RuBPcase activity by Pi was examined. The activity of RuBPcasein the sink-limited leaves, exposed for 6 or 7 d to continuousillumination to alter the source/sink balance, was enhancedwith increasing concentrations of Pi, in a CO2-free preincubationmedium in the presence of 5 mM MgCl2 The maximum value [6.3µmole CO2 (mg Chl)–1 min–1] was obtained atapproximately 5 mM Pi after a 5 min incubation, being 3 timesof the activity without the preincubation. The activity of acrude preparation of RuBPcase that had been deactivated by removalof CO2 and Mg2+ ions by the gel filtration was 5.2–9.3nmole CO2 (mg protein)–1 min–1 and was also enhancedby Pi plus Mg2+ ions. The maximum value [147–151 nmoleCO2 (mg protein)–1 min–1] was attained at 5 mM Piafter a 5 min incubation. The cycle of activation and inactivationof deactivated crude RuBPcase was perfectly reversible by additionof Pi to the enzyme and removal of Pi from the enzyme. Levelsof free Pi and of esterified phosphate in the sink-limited leaveswere 69% and 31% of the total phosphate, respectively. By contrast,in the control leaves, these values were 87% and 13%, respectively.These results support our previously stated hypothesis and indicatean important role for free Pi in the regulation of RuBPcaseactivity, in particular in sink-limited plants. (Received February 21, 1992; Accepted July 23, 1992)  相似文献   

17.
Inskeletal muscle fibers, the intracellular loop between domains II andIII of the 1-subunit of the dihydropyridine receptor (DHPR) may directly activate the adjacent Ca2+ releasechannel in the sarcoplasmic reticulum. We examined the effects ofsynthetic peptide segments of this loop on Ca2+ release inmechanically skinned skeletal muscle fibers with functional excitation-contraction coupling. In rat fibers at physiological Mg2+ concentration ([Mg2+]; 1 mM), a20-residue skeletal muscle DHPR peptide[AS(20);Thr671-Leu690; 30 µM], shown previously toinduce Ca2+ release in a triad preparation, caused onlysmall spontaneous force responses in ~40% of fibers, although itpotentiated responses to depolarization and caffeine in all fibers. TheCOOH-terminal half of AS(20)[AS(10)] induced much larger spontaneousresponses but also caused substantial inhibition of Ca2+release to both depolarization and caffeine. Both peptides induced orpotentiated Ca2+ release even when the voltage sensors wereinactivated, indicating direct action on the Ca2+ releasechannels. The corresponding 20-residue cardiac DHPR peptide [AC(20);Thr793-Ala812] was ineffective, but itsCOOH-terminal half [AC(10)] had effects similar to AS(20). In the presence of lower[Mg2+] (0.2 mM), exposure to eitherAS(20) or AC(10) (30 µM) induced substantial Ca2+ release. PeptideCS (100 µM), a loop segment reported to inhibit Ca2+ release in triads, caused partial inhibition ofdepolarization-induced Ca2+ release. In toad fibers, eachof the A peptides had effects similar to or greater than those in ratfibers. These findings suggest that the A and C regions of the skeletalDHPR II-III loop may have important roles in vivo.

  相似文献   

18.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

19.
Schepkin, V. D., I. O. Choy, and T. F. Budinger. Sodiumalterations in isolated rat heart during cardioplegic arrest. J. Appl. Physiol. 81(6):2696-2702, 1996.Triple-quantum-filtered (TQF) Na nuclearmagnetic resonance (NMR) without chemical shift reagent is used toinvestigate Na derangement in isolated crystalloid perfused rat heartsduring St. Thomas cardioplegic (CP) arrest. Theextracellular Na contribution to the NMR TQF signal of a rat heart isfound to be 73 ± 5%, as determined by wash-out experiments atdifferent moments of ischemia and reperfusion. With the use of thiscontribution factor, the estimated intracellular Na([Na+]i)TQF signal is 222 ± 13% of preischemic level after 40 min of CParrest and 30 min of reperfusion, and the heart rate pressure productrecovery is 71 ± 8%. These parameters aresignificantly better than for stop-flow ischemia: 340 ± 20% and 6 ± 3%, respectively. At 37°C, the initial delay of 15 min in[Na+]igrowth occurs during CP arrest along with reduced growth later (~4.0%/min) in comparison with stop-flow ischemia (~6.7%/min). The hypothermia (21°C, 40 min) for the stop-flow ischemia and CPdramatically decreases the[Na+]igain with the highest heart recovery for CP (~100%). These studiesconfirm the enhanced sensitivity of TQF NMR to[Na+]iand demonstrate the potential of NMR without chemical shift reagent tomonitor[Na+]iderangements.

  相似文献   

20.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号