首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Most cell divisions in the mouse brain have ceased by 14 days after birth. Therefore, spontaneous mutations that occur in brain cells can be assumed to be fixed by replication during brain development. Spontaneous and ethylnitrosourea (ENU)-induced reverse mutations at a single AT base pair were measured in brain tissue by using mice transgenic for PhiX174 am3, cs70. The line (am54) has 50 PhiX genomes per haploid genome integrated in a tandem array and is maintained by random breeding on a C57BL/6 background. For mutagenesis studies, homozygous am54 males were mated to non-transgenic C57BL6/J females. Four-day old offspring from this cross were treated with 50 mg/kg ENU and were euthanized at 68-80 days of age. The ENU-treated animals had a significantly higher frequency of am3 revertants in brain than did concurrent controls. In a second experiment, hemizygous male offspring (85 to 94 days old) were treated with 150 mg/kg ENU and euthanized at various post-injection intervals (3, 10 and 110 days). The revertant frequencies 3 and 10 days after treatment were not significantly different from control values. At the 110 days post-injection interval, however, the average revertant frequency in the treated group was significantly lower than controls. In a second study animals were euthanized 3, 10 and 74 days after treatment. Two groups (3 and 74 days post-injection) also showed a significant decrease in the revertant frequency as compared to controls. Additional sets of adult animals were treated with 50 and 150 mg/kg ENU and were euthanized 195 to 201 days after treatment. The average revertant frequency of the animals that were treated with 50 or 150 mg/kg ENU was not significantly different from the control value. Thus, although an increase in mutant frequency is detected in the PhiX174 system when neonatal mice are treated with ENU, treatment of mature mice with ENU did not result in an increase in the mutant frequency. Moreover, under certain conditions, ENU-produced a significantly lower mutant frequency than was observed in the control animals. This decrease in the revertant frequency among the treated animals was likely due to selective killing of cells with a higher spontaneous revertant frequency than cells with lower frequency.  相似文献   

2.
Tk+/- transgenic mice were created using an embryonic stem cell line in which one allele of the endogenous thymidine kinase (Tk) gene was inactivated by targeted homologous recombination. Breeding Tk+/- parents produced viable Tk-/- knockout (KO) mice. Splenic lymphocytes from KO mice were used in reconstruction experiments for determining the conditions necessary for recovering Tk somatic cell mutants from Tk+/- mice. The cloning efficiency of KO lymphocytes was not affected by the toxic thymidine analogues 5-bromo-2'-deoxyuridine (BrdUrd) or trifluorothymidine (TFT), or by BrdUrd in the presence of lymphocytes from Tk+/- animals; however, it was easier to identify clones resistant to BrdUrd than to TFT when Tk+/- cells were present. Tk+/- mice were treated with vehicle or 100 mg/kg of N-ethyl-N-nitrosourea (ENU), and after 4 months, the frequency of Tk mutant lymphocytes was measured by resistance to BrdUrd. The frequency of Tk mutants was 22+/-5.9x10-6 in control animals and 80+/-31x10-6 in treated mice. In comparison, the frequency of Hprt mutant lymphocytes, as measured by resistance to 6-thioguanine, was 2.0+/-1.2x10-6 in control animals and 84+/-28x10-6 in the ENU-treated mice. Analysis of BrdUrd-resistant lymphocyte clones derived from the ENU-treated animals revealed point mutations in the non-targeted Tk allele. These results indicate that the selection of BrdUrd-resistant lymphocytes from Tk+/- mice may be used for assessing in vivo mutation in an endogenous, autosomal gene.  相似文献   

3.
In a pilot screen, we assayed the efficiency of ethylnitrosourea (ENU) as a chemical mutagen to induce mutations that lead to early embryonic and larval lethal phenotypes in the Japanese medaka fish, Oryzias latipes. ENU acts as a very efficient mutagen inducing mutations at high rates in germ cells. Three repeated treatments of male fish in 3 mM ENU for 1 h results in locus specific mutation rates of 1.1-1.95 x10(-3). Mutagenized males were outcrossed to wild type females and the F1 offspring was used to establish F2 families. F2 siblings were intercrossed and the F3 progeny was scored 24, 48 and 72 h after fertilization for morphological alterations affecting eye development. The presented mutant phenotypes were identified using morphological criteria and occur during early developmental stages of medaka. They are stably inherited in a Mendelian fashion. The high efficiency of ENU to induce mutations in this pilot screen indicates that chemical mutagenesis and screening for morphologically visible phenotypes in medaka fish allows the genetic analysis of specific aspects of vertebrate development complementing the screens performed in other vertebrate model systems.  相似文献   

4.
The am3 revertant frequencies (RF) in spleens from male mice transgenic for phiX174 am3, cs70 were analyzed 14 weeks after ethylnitrosourea (ENU) treatment, both by the single burst assay (SBA) and the mixed burst assay (MBA). The mean in vivo (burst size >30/assay plate) revertant frequency (MRF) for the vehicle control was 2.6x10(-7). The ENU induced in vivo RF were linear over the dose range 0-150mg/kg, (r(2)=0.999). The concomitant in (burst size G transitions. Sequence analysis of in vivo revertants from ENU treated animals revealed revertants that were 17% A-->G transitions and 83% A-->T transversions, the latter being consistent with the reported A:T base pair alterations induced by ENU. No A-->C transitions were seen. This suggests the occurrence of an ENU-induced O(2) ET-dT lesion leading to a dT base mismatch. The observations in this report both confirm and validate the use of the SBA for distinguishing between in vivo mutations that are fixed in the animal and in vitro mutations that arise from other sources. The ability of the SBA to distinguish the in vivo from the in vitro origin of mutations has increased the specificity, sensitivity and utility of the phiX transgenic system.  相似文献   

5.
L5178 mouse lymphoma cells were treated with the mismatching agent 6-hydroxy-aminopurine (HAP), a base analogue known to produce forward and reverse mutations in bacteria. Mutants with the phenotype deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT) were selected in 6-thioguanine (TG)-containing medium and isolated. Reverse mutations to Hhe HPRT-proficient phenotype oc occuredd both spontaneously and after treatment with ethyl nitrosourea (ENU), which suggested that the initial HAP treatment had induced point mutations at the HPRT locus.

Reconstruction experiments, in which a small number of wild-type cells together with different numbers of mutant cells were seeded in HAT medium, indicated that densities up to 106 cells per ml can be used for the selection of revertants. Optimal expression of induced revertants was obtained two days after treatment.

The dose-response relationship for induction of reverse mutations by ENU appears not to deviate from linearity. The highest revertant frequency observed was 3.3 × 10−5 at an ENU concentration of 1 mM. The spontaneous reversion frequency per generation — based on 3 spontaneous revertants — was estimated to be 1.3 × 10−9. All revertants were indistinguishable from the parental wild-type line with respect to the activity as well as the electrophoretic mobility of HPRT.  相似文献   


6.
The mutagenic effectiveness of ethylnitrosurea (ENU) was assessed in treated spermatogonia of DBA/2 mice. In a total of 17,515 offspring examined following 160 mg ENU/kg body weight treatment of parental males, 26 forward specific-locus mutations, 2 reverse specific-locus mutations and 9 dominant cataract mutations were recovered. ENU increased the mutation rate to all 3 genetic endpoints. However, ENU was less effective in treated DBA/2 mice than in the standard experimental protocol employing treated hybrid (102 X C3H)F1 male mice. This observed difference for a direct-acting mutagen such as ENU may result from differences in the detoxification of ENU or from differences in the DNA-repair capabilities of strain DBA/2. The first documented reverse mutation of the b allele is reported. The reversion was shown to be due to an AT to GC transition. To date, in addition to the reverse mutation of the b allele, 5 independent ENU-induced mutations recovered in germ cells of the mouse have been molecularly characterized and all have been shown to be base substitutions at an AT site. This is in contrast to the expected mechanism of ENU mutation induction due to O6-ethylguanine adduct formation which results in a GC to AT base-pair substitution and emphasizes the complexities of mutagenesis in germ cells of mammals.  相似文献   

7.
We evaluated the antimutagenic effect of Letinula edodes (Berk.) Pegler (Shiitake) on the frequency of micronuclei in mice treated with N-ethyl-N-nitrosourea (ENU) or cyclophosphamide (CP). Mice were orally (gavage) pretreated for 15 consecutive days with solutions of Shiitake (0.6 ml per day, gavage) prepared at three different temperatures: 4, 21 (RT), and 60 degrees C. Then, the animals were intraperitoneally injected on day 15 with CP (25 or 50mg/kg) or ENU (50 mg/kg) and killed 24 or 48 h after treatment for evaluation of micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow and micronucleated reticulocytes (MNRETs). A mixture of L. edodes lineages (LE 95/016, 96/14, 96/17, 96/22, 96/23, 97/27, and 97/28) significantly decreased the frequencies of MNPCEs and MNRETs induced by CP (25 and 50mg/kg). When a single lineage from the mixture (LE 96/17) was tested we also found a significant reduction in the frequencies of MNPCEs and MNRETs induced by both CP or ENU (50mg/kg). The comet assay was also performed 3h after ENU treatment using mice pretreated with the single lineage (LE 96/17) of L. edodes. The results showed a high degree of variability with some indications of an antigenotoxic effect. Taken together, our data show that solutions from Shiitake inhibit in vivo mutagenicity of CP and ENU.  相似文献   

8.
Experiments were performed to characterize the age-related patterns of appearance and frequency of hypoxanthine-guanine phosphoribosyl transferase (Hprt) mutant T lymphocytes in thymus and spleen following exposure of preweanling (12-day-old), weanling (22-day-old), and young adult (8-week-old) male B6C3F1 mice to ethylnitrosourea (ENU). Mice were given single i.p. injections of 0 or 40 mg ENU/kg and then groups of animals were necropsied from 2 h to 116 days after treatment to examine the relationships between exposure, cell loss and proliferation, and the frequency of Hprt mutant T cells in thymus and spleen. Hprt mutant frequency (Mf) data for thymus of ENU-exposed (0, 11.7, 35, 58, or 72 mg/kg, or five weekly doses of 1.7 mg/kg i.p.) male C57BL/6 mice (12- or 62-week-old), obtained during an earlier study of spleen cells [I.M. Jones, K. Burkhart-Schultz, C.L. Strout, T.L. Crippen, Factors that affect the frequency of thioguanine-resistant lymphocytes in mice following exposure to ethylnitrosourea, Environ. Mutagen. 9 (1987) 317–329.], were compared to results in B6C3F1 mice. Isolated T cells were cultured in the presence of mitogen, growth factor, and 6-thioguanine to detect Hprt mutants. The time required to achieve maximum Mfs in thymus was uniformly found at 2 weeks after ENU treatment, while the times needed to reach peak values in spleen were proportional to animal age at treatment. These data indicate that age-related differences in the appearance of Hprt mutant cells in spleen are largely defined by the physiologically based, age-dependent trafficking of mutant cells from or through the thymus. Three modes of handling the resulting Hprt Mf data were evaluated: (i) comparing the Mfs at a single time point, (ii) comparing the maximum Mfs observed, and (iii) comparing the change in Mfs over time (or the mutant T cell ‘manifestation’ curves in treated vs. control mice) in each age group post-exposure. Measuring the Mfs in spleen at multiple time points after cessation of exposure and integrating the frequency of mutants as a function of time appeared to be the superior method for comparing mutagenic responses in different age groups. Some of the underlying assumptions of this approach, as well as its strengths and weaknesses, are discussed.  相似文献   

9.
The mouse electrophoretic specific-locus test for induced germ-cell mutations, was used to determine the response of spermatogonial stem cells to a series of doses of the germ cell mutagen N-ethyl-N-nitrosourea (ENU). Male DBA/2J and C57B1/6J mice were treated with doses of 50, 100, 200 or 250 mg/kg ENU and their progeny screened for electrophoretically-detectable mutations at 32 separate loci. As expected, increasing doses of ENU led to increasing mutant frequencies. The differences in mutant frequencies between treated DBA/2J and C57B1/6J males were not statistically significant.  相似文献   

10.
We compared the induction of gene mutations and chromosomal aberrations by ethylating agents in lacZ transgenic mice (Muta™Mouse). Chromosomal aberrations were detected by the peripheral blood micronucleus assay. Gene mutations were detected in the lacZ transgene. A small amount of blood was sampled from a tail vessel during the expression time for fixation of gene mutations in vivo; this enabled us to detect and compare clastogenicity and gene mutations in the identical mouse. Single intraperitoneal injections of ENU (50–200 mg/kg) and EMS (100–400 mg/kg) strongly induced micronucleated reticulocytes (MN) detectable in peripheral blood 48 h after treatment. The maximum MN frequencies induced were 6.6% and 3.3% for ENU (100 mg/kg) and EMS (400 mg/kg), respectively (the control value was 0.3%). lacZ mutant frequency (MF) was analyzed in bone marrow and liver 7 days after treatment. Spontaneous MFs were 2.0–4.6x10−6. MF in bone marrow was increased by ENU to 3.4x10−5 at 200 mg/kg and induced by EMS to 1.8x10−5 at 400 mg/kg. In liver, however, both chemicals at their highest doses induced only slight increases in MF. The induction of both micronuclei and lacZ mutations in bone marrow by both ENU and EMS correlated better with O6-ethylguanine adducts than with N7-ethylguanine adducts. The mutants (19 for ENU and 12 for EMS) were subjected to DNA sequence analysis. Among EMS-induced mutations, 75% were GC to AT transitions, which were probably caused by O6-ethylguanine. Among ENU-induced mutations, in contrast, 40% occurred as AT base pair substitutions (6 AT to TA transversions and 2 AT to GC transitions) (no such mutations were induced by EMS). These results, together with the known reactivity of ENU to thymine suggest that thymine adducts play a significant role in the ENU mutagenesis.  相似文献   

11.
Experiments were performed to characterize the age-related patterns of appearance and frequency of hypoxanthine-guanine phosphoribosyl transferase (Hprt) mutant T lymphocytes in thymus and spleen following exposure of preweanling (12-day-old), weanling (22-day-old), and young adult (8-week-old) male B6C3F1 mice to ethylnitrosourea (ENU). Mice were given single i.p. injections of 0 or 40 mg ENU/kg and then groups of animals were necropsied from 2 h to 116 days after treatment to examine the relationships between exposure, cell loss and proliferation, and the frequency of Hprt mutant T cells in thymus and spleen. Hprt mutant frequency (Mf) data for thymus of ENU-exposed (0, 11.7, 35, 58, or 72 mg/kg, or five weekly doses of 1.7 mg/kg i.p.) male C57BL/6 mice (12- or 62-week-old), obtained during an earlier study of spleen cells [I.M. Jones, K. Burkhart-Schultz, C.L. Strout, T.L. Crippen, Factors that affect the frequency of thioguanine-resistant lymphocytes in mice following exposure to ethylnitrosourea, Environ. Mutagen. 9 (1987) 317–329.], were compared to results in B6C3F1 mice. Isolated T cells were cultured in the presence of mitogen, growth factor, and 6-thioguanine to detect Hprt mutants. The time required to achieve maximum Mfs in thymus was uniformly found at 2 weeks after ENU treatment, while the times needed to reach peak values in spleen were proportional to animal age at treatment. These data indicate that age-related differences in the appearance of Hprt mutant cells in spleen are largely defined by the physiologically based, age-dependent trafficking of mutant cells from or through the thymus. Three modes of handling the resulting Hprt Mf data were evaluated: (i) comparing the Mfs at a single time point, (ii) comparing the maximum Mfs observed, and (iii) comparing the change in Mfs over time (or the mutant T cell ‘manifestation’ curves in treated vs. control mice) in each age group post-exposure. Measuring the Mfs in spleen at multiple time points after cessation of exposure and integrating the frequency of mutants as a function of time appeared to be the superior method for comparing mutagenic responses in different age groups. Some of the underlying assumptions of this approach, as well as its strengths and weaknesses, are discussed.  相似文献   

12.
Somatic cells of whole Syrian hamster fetuses (gestation day 13) were isolated and tested by an in vivo/in vitro mutation assay for spontaneous mutation frequencies using independent 6-thioguanine (6-TG), diphtheria toxin (DT), and ouabain mutation selection systems. Optimum conditions were ascertained. For 6-TG mutants, a total of 21 mutants were found in cells from 24 litters on 1993 plates, for an overall mutant frequency of 1.8 x 10(-7) per viable cell with 12 positive litters. In all, 26 litters were tested using DT; 77 mutants were found in 840 plates, yielding an overall mutant frequency of 2.6 x 10(-7), with 20 positive litters. No correlations or familial effects were found among 23 litters tested for both DT and 6-TG. Of 14 litters which were tested for ouabain mutants, 4 were positive, with a total of 5 mutants found on 988 plates, for an overall mutant frequency of 7.6 x 10(-8). For 14 F344 rat fetuses, the overall 6-TG spontaneous mutation frequency was determined to be 1.6 x 10(-7). From the data, estimates of mutation rates were calculated. For mutation to 6-TG resistance the rate was 8.3 x 10(-8), for mutation to DT resistance the rate was 8.1 x 10(-8) and for ouabain, the spontaneous mutation rate was 5.7 x 10(-8). For F344 rat, the spontaneous mutation rate was 1.1 x 10(-7). Induced mutant frequencies after in utero exposure to 1 mmol/kg N-ethyl-N-nitrosourea (ENU) were 311, 135 and 200 times the spontaneous value for 6-TG, DT and ouabain, respectively, for Syrian hamster fetal cells and 125 times the spontaneous 6-TG value for fetal F344 rat cells. Both spontaneous mutation frequencies and underlying spontaneous mutation rates are low, consistent with the view that fetal cells exercise extremely tight control over DNA fidelity.  相似文献   

13.
Human fibroblast cell lines were pulse-treated for 1 h with either methylnitrosourea (MNU) or ethylnitrosourea (ENU) at various time intervals before harvesting for chromosome analysis. Cells treated with 1 X 10(-3) M, 5 X 10(-4) M, and 1 X 10(-4) M final concentrations of MNU and ENU during the G2 or M phases of the cell cycle showed a significant increase in chromatid-type abnormalities over controls. Cells exposed to MNU or ENU 23 h before harvest showed some chromosome-type abnormalities, reflecting probable damage induced during the G1 phase of the cell cycle or derived from chromatid damage induced during the previous cell cycle. The mitotic indices and incidences of abnormalities suggested a dose response effect when cells were treated with the two higher concentrations and the three concentrations, respectively, of MNU or ENU. Chromatid abnormalities were observed in MUN and ENU-treated cells from each of four cell lines. From this investigation, it was concluded that MNU and ENU treatment of human diploid cell lines in vitro induced both chromatid and chromosome aberrations. MNU and ENU, both of which had previously been shown to be mutagenic in experimental animals, are, therefore, also considered to be mutagenic at the chromosome level in human fibroblasts grown and treated in cell culture.  相似文献   

14.
6 platinum (Pt) compounds were compared in suspension cultured Chinese hamster ovary (CHO-S) cells with respect to their inhibition of growth, their reduction of cloning efficiency, and their induction of mutants resistant to 200 microM (30 micrograms/ml) 8-azaguanine (8-AG) and 3 mM ouabain (OUA), respectively. The toxicity of these compounds can be ranked by the medium concentrations which decrease suspension growth/or cloning efficiency by 50%: cis-Pt(NH3)2-Cl2 (0.9/1.5 microM) greater than Pt(SO4)2 + methylcobalamin (MeB-12) methylation product (20/10 microM) greater than K2PtCl4 (32/50 microM) = K2PtCl6 (34/50 microM) = MePtCl2-3 (60/50 microM) greater than Pt(SO4)2 (66/105 microM). Following 20 h exposures to concentrations which resulted in relative survivals of 80-2%, none of the foregoing compounds increased consistently the frequency of OUA(R) mutants above the spontaneous frequency (6.0 x 10(-6)). Parallel treatments with 800 microM (100 micrograms/ml) ethyl methanesulfonate (EMS) increased the OUA(R) mutant frequency 10--12-fold. Using 8-AG for mutant selection, dose-dependent increases of 5--7-fold above the spontaneous frequency (3--8 x 10(-5) were obtained with cis-Pt(NH3)2Cl2, Pt(S04)2, and the product from Pt(SO4)2 + MeB-12. Identical 20 h exposures to varying amounts of K2PtCl4, K2PtCl6, and MePtCl2-3 did not induce 8-AG(R) mutants. Optimal detection of Pt-induced 8-AG(R) mutants required 7 post-treatments, expression doublings in suspension culture. Under our selection conditions 8/8 spontaneous and 24/24 Pt-induced 8-AG(R) variants contained reduced hypoxanthine-guanine phosphoribosyl transferase (HGPRT) specific activities (means ranging from 3 to 11% of the parental CHO-S cells). When compared from linear plots of the 8-Ag(r) frequency against the initial medium concentration, cis-Pt(NH3)2Cl2 is 134 times and Pt(SO4)2 si 3.5 times more mutagenic than EMS. However, on a cell-survival basis EMS is 8--10-fold more mutagenic than these two Pt-compounds. 6-Thioguanine (10 microM) can be substituted for 8-AG to assay mutant induction by cis-Pt(NH3)2Cl2 and Pt(SO4)2 in CHO-S cells. The sensitivity of the CHO-S HGPRT locus for detecting mutagenesis by Pt complexes can be increased several fold by continuous subculture in the presence of these agents for 10--25 population doublings. By this procedure K2PtCl6 is seen to be weakly mutagenic and 20 microM Pt(SO4)2 produces 8-AG(R) mutants at frequencies requiring 7--8-fold higher concentrations when a fixed 20 h exposure is used.  相似文献   

15.
Murine lymphokine-activated killer (LAK) cells were generated from spleen cells of C57/BL6 mice by culture of spleen cells in vitro for 72 hours in medium containing 500 units/ml recombinant human interleukin 2 (IL-2), and effects of these LAK cells on proliferation of syngenic myeloid progenitor cells (CFU-GM) were observed. After 3 days culture, LAK cells were assayed for their cytotoxicity in a 4 hours 51Cr-release test. Either natural killer (NK) cell sensitive YAC-1 lymphoma cells or NK cell resistant LP-3 and WEHI-164 fibrosarcoma cells were efficiently lysed by murine LAK cells. When LAK cells were added into culture system in a final concentration of 5 x 10(4)/ml, 2 x 10(5)/ml, 8 x 10(5)/ml, CFU-GM were increased by 55.2%, 165.5%, and 194.4% of control respectively. LAK-CM also showed augmentative effect on CFU-GM growth. When 10% (v/v) of LAK-CM were added into culture system, CFU-GM were increased by 51.4% of control, but LAK-CM alone could not stimulate CFU-GM growth. Again, effects of LAK-BMC interaction on CFU-GM formation were investigated. CFU-GM were inhibited to 27.6% of control when 1 x 10(5) BMC were mixed with 8 x 10(5) LAK cells and incubated for 4 hours prior to CFU-GM culture. These data suggest that (1) LAK cells may secrete co-CSF which showed synergistic effect with CSF on CFU-GM proliferation: (2) When LAK cells contact with BMC, they showed significant cytotoxicity to myeloid progenitor cells which mediated decrease of CFU-GM formation.  相似文献   

16.
The present study was to investigate the effects of in vitro fertilization conditions on in vitro development and structural integrity of pig embryos. Porcine oocytes matured in vitro were co-incubated with four different spermatozoa concentrations (0.6 x 10(5), 1.2 x 10(5), 2.5 x 10(5) and 5 x 10(5) cells/ml) for 6 h, and at a spermatozoa concentration (1.2 x 10(5) cells/ml) for 2, 4 and 6 h, respectively. Spermatozoa penetration and blastocyst formation were observed at 10 and 144 h post insemination, respectively. The allocation of a blastocyst to inner cell mass (ICM) and trophectoderm (TE) cells was determined by using a differential staining method. Polyspermy frequency increased with increasing spermatozoa concentrations. The spermatozoa-oocyte co-incubation period of 2 h provided for decreased in vitro development rate than 4 and 6 h groups (P < 0.05), although no difference was detected in polyspermy frequency between spermatozoa-oocyte co-incubation periods. Interestingly, blastocysts derived from the groups with greater spermatozoa concentrations (2.5 x 10(5) and 5 x 10(5) cells/ml) had significantly fewer ICM cell nuclei as compared with those groups with lesser spermatozoa concentrations (0.6 x 10(5) and 1.2 x 10(5) cells/ml). There was no difference in the structural integrity of blastocysts among the co-incubation periods. Blastocysts derived from respective experiments were individually classified into three groups (I: <20%; II: 20-40% and III: >40%) based on the ratio of ICM to total cells. Proportion of blastocysts in Group II, with a presumptive normal range of structural integrity, was slightly decreased in the groups with greater spermatozoa concentrations (2.5 x 10(5) and 5 x 10(5) cells/ml). The results indicate that the spermatozoa concentration during in vitro fertilization may be important for developmental competence and quality of pig embryos.  相似文献   

17.
We report the development of a new serum-free medium based on the use of factorial experiments. At first, a variety of hydrolysates were screened using a fractional factorial approach with High-Five cells. From this experiment yeastolate ultrafiltrate was found to have, by far, the most important effect on cell growth. Furthermore, Primatone RL was found to remarkably prolong the stationary phase of Sf-9 and High-Five cell cultures. The optimal concentrations for yeastolate and Primatone were determined to be 0.6 and 0.5%, respectively, on the basis of a complete factorial experiment. This new medium, called YPR, supported good growth of both Sf-9 and High-Five cells in batch cultures, with maximal densities of 5.4 and 6.1 x 10(6) cells/ml, respectively. In addition, both cell lines achieved good growth in bioreactor batch culture and had a prolonged stationary phase of 3-4 d in YPR medium compared to Insect-XPRESS medium. The ability of the new medium to support recombinant protein expression was also tested by infecting Sf-9 or High-Five cells at high density (2 x 10(6) cells/ml) with a baculovirus expressing secreted placental alkaline phosphatase (SEAP). The maximum total SEAP concentration after 7 d was about 43 lU/ml (58 mg/L) and 28 lU/ml (39 mg/L) for High-Five and Sf-9 cells, respectively.  相似文献   

18.
We have evaluated the prostaglandin (PG) production and PG biosynthetic gene expression in a choriodecidual dispersed cell culture system. Cells dispersed from human choriodecidual membranes by dispase and trypsin digestion were evaluated after 1,3,5 and 7 days of culture for basal and tumour necrosis factor alpha (F-alpha) stimulated PGE2 production. The highest rates of production (P < 0.05) were obtained with cells treated after 3 days of culture, (3.7 +/- 1) x 10(2) pg PGE2 per 16 h per microg total cellular protein (mean +/- SEM), which was 3.9 times basal rate after 3 days culture. In choriodecidual cells treated after 3 days in culture, expression of prostaglandin endoperoxide H synthase-2 (PGHS-2) mRNAwas similarly responsive toTNF-alpha (3.9 times basal within 3 h of 30 ng/ml TNF-alpha) while there was little effect on PGHS-1 or cytosolic phospholipase A2 expression. Hence, the dispersed choriodecidual cell culture system described retainsTNF-alpha responsive PG biosynthetic capacity which is at least in part upregulated via increased expression of PGHS-2 mRNA.  相似文献   

19.
The present work describes the inducive effect of cresoquinone on microbiological transformation of L-tyrosine to 3,4 dihydroxy phenyl L-alanine ( L-DOPA) by Aspergillus oryzae NG-11(P1). Mould mycelium was used for biochemical conversion of L-tyrosine to L-DOPA because tyrosinases, beta-carboxylases and tyrosine hydroxylases are intracellular enzymes. The maximum conversion of L-tyrosine to L-DOPA (0.428 mg/ml) was achieved after 60 min of biochemical reaction. To enhance the production of L-DOPA, cresoquinone was added to the reaction mixture. Best L-DOPA biosynthesis results were observed when the concentration of cresoquinone was 3.5 x 10(-6) M (1.686 mg/ml L-DOPA produced with 1.525 mg/ml consumption of L-tyrosine). Cresoquinone not only increased enzyme activity but also enhanced cell membrane permeability to facilitate secretion of enzymes into the reaction broth. Comparison of kinetic parameters revealed the ability of the mutant to yield L-DOPA [Y(p/x) [i.e., mg L-DOPA formed (mg cells formed)(-1)] =7.360+/-0.04]. When the culture grown on various cresoquinone levels was monitored for Q(p), Q(s) and q(p) [ Q(p): mg L-DOPA produced ml(-1) x h(-1); Q(s): mg substrate consumed ml(-1) x h(-1); q(p): mg L-DOPA formed (mg cells)(-1) h(-1)], there was significant enhancement ( P<0.025) of these variables.  相似文献   

20.
Carcinogenesis in humans is thought to result from exposure to numerous environmental factors. Little is known, however, about how these different factors work in combination to cause cancer. Because thymic lymphoma is a good model of research for combined exposure, we examined the occurrence of mutations in thymic DNA following exposure of B6C3F1 gpt-delta mice to both ionizing radiation and N-ethyl-N-nitrosourea (ENU). Mice were exposed weekly to whole body X-irradiation (0.2 or 1.0 Gy), ENU (200 ppm) in the drinking water, or X-irradiation followed by ENU treatment. Thereafter, genomic DNA was prepared from the thymus and the number and types of mutations in the reporter transgene gpt was determined. ENU exposure alone increased mutant frequency by 10-fold compared to untreated controls and over 80% of mutants had expanded clonally. X-irradiation alone, at either low or high dose, unexpectedly, reduced mutant frequency. Combined exposure to 0.2 Gy X-rays with ENU dramatically decreased mutant frequency, specifically G:C to A:T and A:T to T:A mutations, compared to ENU treatment alone. In contrast, 1.0 Gy X-rays enhanced mutant frequency by about 30-fold and appeared to accelerate clonal expansion of mutated cells. In conclusion, repeated irradiation with 0.2 Gy X-rays not only reduced background mutation levels, but also suppressed ENU-induced mutations and clonal expansion. In contrast, 1.0 Gy irradiation in combination with ENU accelerated clonal expansion of mutated cells. These results indicate that the mode of the combined mutagenic effect is dose dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号