首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vieira CP  Charlesworth D 《Heredity》2002,88(3):172-181
The self-incompatibility system of flowering plants is a classic example of extreme allelic polymorphism maintained by frequency-dependent selection. We used primers designed from three published Antirrhinum hispanicum S-allele sequences in PCR reactions with genomic DNA of plants sampled from natural populations of Antirrhinum and Misopates species. Not surprisingly, given the polymorphism of S-alleles, only a minority of individuals yielded PCR products of the expected size. These yielded 35 genomic sequences, of nine different sequence types of which eight are highly similar to the A. hispanicum S-allele sequences, and one to a very similar unpublished Antirrhinum S-like RNase sequence. The sequence types are well separated from the S-RNase sequences from Solanaceae and Rosaceae, and also from most known "S-like" RNase sequences (which encode proteins not involved in self-incompatibility). An association with incompatibility types has so far been established for only one of the putative S-alleles, but we describe evidence that the other sequences are also S-alleles. Variability in these sequences follows the pattern of conserved and hypervariable regions seen in other S-RNases, but no regions have higher replacement than silent diversity, unlike the results in some other species.  相似文献   

2.
3.
Control of organ asymmetry in flowers of Antirrhinum   总被引:20,自引:0,他引:20  
Luo D  Carpenter R  Copsey L  Vincent C  Clark J  Coen E 《Cell》1999,99(4):367-376
Organ asymmetry is thought to have evolved many times independently in plants. In Antirrhinum, asymmetry of the flower and its component organs requires cyc and dich gene activity. We show that, like cyc, the dich gene encodes a product belonging to the TCP family of DNA-binding proteins that is first expressed in the dorsal domain of early floral meristems. However, whereas cyc continues to be expressed throughout dorsal regions, expression of dich eventually becomes restricted to the most dorsal half of each dorsal petal. This correlates with the effects of dich mutations and ectopic cyc expression on petal shape, providing an indication that plant organ asymmetry can reflect subdomains of gene activity. Taken together, the results indicate that plant organ asymmetry can arise through a series of steps during which early asymmetry in the developing meristem is progressively built upon.  相似文献   

4.
Low levels of genetic diversity and divergence at nuclear loci have previously been observed for cycloidea and fil1-like genes within and between several Antirrhinum species, and divergence at these loci is also low between species in genera at different levels of relatedness in the former family Scrophulariaceae (Digitalis and Verbascum). The low divergence values are surprising, because (based on the sequences of chloroplast loci) the Scrophulariaceae are thought to be polyphyletic, with two anciently diverged clades, and the species we compared belonged to the two different clades. Here, we extend our studies of sequence divergence to more nuclear genes: fil2, far, globosa, and ADH: Detailed studies revealed that in Antirrhinum these genes belong to gene families. Low levels of divergence between Antirrhinum and Verbascum were observed for four of the loci studied, fil2-1, fil2-2, far-L, and globosa, similar to our previous observations. We discuss hypotheses to explain these low synonymous divergence values. For Adh, no cases of very similar sequences were found, but, rather, our sequences from the three different genera (Antirrhinum, Digitalis, and Verbascum) were all very diverged. Repeated gene duplication and loss of elements in the Adh gene family is likely in these lineages, making it impossible to determine orthology of the Adh genes.  相似文献   

5.
6.
The serum albumin gene family is composed of four members that have arisen by a series of duplications from a common ancestor. From sequence differences between members of the gene family, we infer that a gene duplication some 580 Myr ago gave rise to the vitamin D–binding protein (DBP) gene and a second lineage, which reduplicated about 295 Myr ago to give the albumin (ALB) gene and a common precursor to α-fetoprotein (AFP) and α-albumin (ALF). This precursor itself duplicated about 250 Myr ago, giving rise to the youngest family members, AFP and ALF. It should be possible to correlate these dates with the phylogenetic distribution of members of the gene family among different species. All four genes are found in mammals, but AFP and ALF are not found in amphibia, which diverged from reptiles about 360 Myr ago, before the divergence of the AFP-ALF progenitor from albumin. Although individual family members display an approximate clock-like evolution, there are significant deviations—the rates of divergence for AFP differ by a factor of 7, the rates for ALB differ by a factor of 2.1. Since the progenitor of this gene family itself arose by triplication of a smaller gene, the rates of evolution of individual domains were also calculated and were shown to vary within and between family members. The great variation in the rates of the molecular clock raises questions concerning whether it can be used to infer evolutionary time from contemporary sequence differences. Received: 28 February 1995 / Accepted: 6 October 1997  相似文献   

7.
Tempo and mode of concerted evolution in the L1 repeat family of mice   总被引:10,自引:0,他引:10  
A 300-bp DNA sequence has been determined for 30 (10 from each of three species of mice) random isolates of a subset of the long interspersed repeat family L1. From these data we conclude that members of the L1 family are evolving in concert at the DNA sequence level in Mus domesticus, Mus caroli, and Mus platythrix. The mechanism responsible for this phenomenon may be either duplicative transposition, gene conversion, or a combination of the two. The amount of intraspecies divergence averages 4.4%, although between species base substitutions accumulate at the rate of approximately 0.85%/Myr to a maximum divergence of 9.1% between M. platythrix and both M. domesticus and M. caroli. Parsimony analysis reveals that the M. platythrix L1 family has evolved into a distinct clade in the 10-12 Myr since M. platythrix last shared a common ancestor with M. domesticus and M. caroli. The parsimony tree also provides a means to derive the average half-life of L1 sequences in the genome. The rates of gain and loss of individual copies of L1 were estimated to be approximately equal, such that approximately one-half of them turn over every 3.3 Myr.   相似文献   

8.
In this study we investigated the phylogenetics of the Eurasian treecreeper (Certhia familiaris), a forest passerine with a wide Palaearctic range including Corsica, using three mitochondrial genes and three nuclear introns, and its phylogeographic history using the COI gene. Our phylogenetic results, including eight of the ten sub‐species currently recognized, support the monophyly of C. familiaris with respect to its Indo‐Asian sister species C. hodgsoni. C. familiaris comprises two lineages that diverged during the mid‐Pleistocene (c. 1 Myr): one palaeoendemic lineage has an allopatric range nowadays restricted to the Corsica island and the Caucasus region whereas the second one, more recent and widespread, is distributed over most of Eurasia and in northern China. The most likely scenario that may explain such a pattern is a double colonization of the western Palaearctic from the eastern range of the species. During the middle Pleistocene period, a first lineage expanded its range up into Europe but did not persist through glacial cycles except in Corsica and the Caucasus region. Later, during the upper Pleistocene, a second lineage began to diversify around 0.09 Myr, spreading towards the western Palaearctic from a unique refuge likely located in the eastern Palaearctic [correction added on 6 March 2015 after first online publication: 0.9 Myr amended to 0.09 Myr]. Apart from C. f. corsa, our results do not suggest any distinct evolutionary history for other sub‐species previously described on morphological grounds in Europe. Our study highlights the important conservation value of the Corsican treecreeper and emphasizes the major role of mature pine forests in the evolution of endemic bird taxa in Corsica. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 134–153.  相似文献   

9.
简要评述了被子植物花对称性遗传控制研究的最新进展。金鱼草中控制花背腹轴不对称性基因Cy cloidea(Cyc)和Dichotama(Dich)的克隆 ,为研究单对称花的遗传控制机理和进化历程提供了可能。在唇形目(Lamialess .l.)中的研究表明 ,在与金鱼草 (Antirrhinummajus)近缘的物种中 ,Cyc基因的同源基因可以采用相似的机制控制背腹轴上花器官的不对称性发育。最新的研究结果显示 ,在同金鱼草远缘的豆科植物 (Legu minosae)中 ,不仅存在Cyc基因的同源基因 ,而且它们也参与花背腹轴上不对称性的形成。参与花对称性控制的基因属于植物中一个新发现的基因家族———TCP结构域基因  相似文献   

10.
Origin of allelic diversity in antirrhinum S locus RNases.   总被引:17,自引:0,他引:17       下载免费PDF全文
In many plant species, self-incompatibility (SI) is genetically controlled by a single multiallelic S locus. Previous analysis of S alleles in the Solanaceae, in which S locus ribonucleases (S RNases) are responsible for stylar expression of SI, has demonstrated that allelic diversity predated speciation within this family. To understand how allelic diversity has evolved, we investigated the molecular basis of gametophytic SI in Antirrhinum, a member of the Scrophulariaceae, which is closely related to the Solanaceae. We have characterized three Antirrhinum cDNAs encoding polypeptides homologous to S RNases and shown that they are encoded by genes at the S locus. RNA in situ hybridization revealed that the Antirrhinum S RNase are primarily expressed in the stylar transmitting tissue. This expression is consistent with their proposed role in arresting the growth of self-pollen tubes. S alleles from the Scrophulariaceae form a separate group from those of the Solanaceae, indicating that new S alleles have been generated since these families separated (approximately 40 million years). We propose that the recruitment of an ancestral RNase gene into SI occurred during an early stage of angiosperm evolution and that, since that time, new alleles subsequently have arisen at a low rate.  相似文献   

11.
To understand how changes in gene regulatory networks lead to novel morphologies, we have analysed the evolution of a key target gene, RAD, controlling floral asymmetry. In Antirrhinum, flower asymmetry depends on activation of RAD in dorsal regions of the floral meristem by the upstream regulators CYC and DICH. We show that Arabidopsis, a species with radially symmetric flowers, contains six RAD-like genes, reflecting at least three duplications since the divergence of Antirrhinum and Arabidopsis. Unlike the situation in Antirrhinum, none of the Arabidopsis RAD-like genes are activated in dorsal regions of the flower meristem. Rather, the RAD-like genes are expressed in distinctive domains along radial or ab-adaxial axes, consistent with a range of developmental roles. Introduction of a RAD genomic clone from Antirrhinum into Arabidopsis leads to a novel expression pattern that is distinct from the expression pattern of RAD in Antirrhinum and from the endogenous RAD-like genes of Arabidopsis. Nevertheless, RAD is able to influence developmental targets in Arabidopsis, as ectopic expression of RAD has developmental effects in this species. Taken together, our results suggest that duplication and divergence of RAD-like genes has involved a range of cis- and trans-regulatory changes. It is possible that such changes led to the coupling of RAD to CYC regulation in the Antirrhinum lineage and hence the co-option of RAD had a role in the generation of flower dorsoventral asymmetry.  相似文献   

12.
The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae   总被引:7,自引:0,他引:7  
The glucosinolate hydrolyzing enzymes myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) are encoded by a multigene family consisting of two subgroups. The first two nuclear genes representing each of these two subgroups of the new gene family, Myr1.Bn1 and Myr2.Bn1, from Brassica napus have been cloned and sequenced. Based on conserved regions in cDNA of three species, PCR (polymerase chain reaction) primers were made, and used to amplify and characterize the structure of the myrosinase genes in seven species of Brassiceae. Southern hybridization analysis of PCR products and genomic DNA indicates that myrosinase is encoded by at least 14 genes in B. napus, with similar numbers in the other species of Brassicaceae investigated. The Myr1 gene cloned from B. napus has a 19 amino acid signal peptide and consists of 11 exons of sizes ranging from 54 to 256 bp and 10 introns of sizes from 75 to 229 bp. The Myr2 gene has a 20 amino acid signal peptide and consists of 12 exons ranging in size from 35 to 262 bp and 11 introns of sizes from 81 to 131 bp. The exons from the two genes have 83% homology at the amino acid level. The intron-exon splice sites are of GT..AG consensus type. The signal peptides and presence of sites for N-linked glycosylation, suggest transport and glycosylation through the ER-Golgi complex. The differences between the two genes are discussed on the basis of their predicted expression at different developmental stages in the plant. Both genes show homology to a conserved motif representing the glycosyl hydrolase family of enzymes.  相似文献   

13.
Detailed nucleotide diversity studies revealed that the fil1 gene of Antirrhinum, which has been reported to be single copy, is a member of a gene family composed of at least five genes. In four Antirrhinum majus populations with different mating systems and one A. graniticum population, diversity within populations is very low. Divergence among Antirrhinum species and between Antirrhinum and Digitalis is also low. For three of these genes we also obtained sequences from a more divergent member of the Scrophulariaceae, Verbascum nigrum. Compared with Antirrhinum, little divergence is again observed. These results, together with similar data obtained previously for five cycloidea genes, suggest either that these gene families (or the Antirrhinum genome) are unusually constrained or that there is a low rate of substitution in these lineages. Using a sample of 52 genes, based on two measures of codon usage (ENC and GC3 content), we show that cyc and fil1 are among the least biased Antirrhinum genes, so that their low diversity is not due to extreme codon bias. Received: 20 June 2000 / Accepted: 25 October 2000  相似文献   

14.
15.
The SELF-PRUNING gene family in tomato   总被引:6,自引:0,他引:6  
The SELF PRUNING (SP) gene controls the regularity of the vegetative-reproductive switch along the compound shoot of tomato and thus conditions the 'determinate' (sp/sp) and 'indeterminate' (SP_) growth habits of the plant. SP is a developmental regulator which is homologous to CENTRORADIALIS (CEN) from Antirrhinum and TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) from Arabidopsis. Here we report that SP is a member of a gene family in tomato composed of at least six genes, none of which is represented in the tomato EST collection. Sequence analysis of the SP gene family revealed that its members share homology along their entire coding regions both among themselves and with the six members of the Arabidopsis family. Furthermore, members of the gene family in the two species display a common genomic organization (intron-exon pattern). In tomato, phylogenetically close homologues diverged considerably with respect to their organ expression patterns while SP2I and its closest homologue from Arabidopsis (MFT) exhibited constitutive expression. This research focusing on a plant of sympodial growth habit sets the stage for a functional analysis of this weakly expressed gene family which plays a key role in determining plant architecture.  相似文献   

16.
M Ito  A Yasui  A Komamine 《FEBS letters》1992,301(1):29-33
Previously we reported the isolation and characterization of the gene, cyc07, which was specifically expressed in the S phase during the cell cycle in synchronous cell division cultures of the higher plant, Catharanthus roseus. We found that the yeast Saccharomyces cerevisiae contains two closely related genes which show a high degree of similarity (about 64% at the amino acid level) to cyc07 of C. roseus. Site-directed disruption mutations demonstrated that the two yeast genes, homologous to cyc07, constitute an essential gene family for cell proliferation in yeast cells. Furthermore, the rate of cell proliferation varied with the gene copy number.  相似文献   

17.
Evolution of regulatory interactions controlling floral asymmetry   总被引:1,自引:0,他引:1  
A key challenge in evolutionary biology is to understand how new morphologies can arise through changes in gene regulatory networks. For example, floral asymmetry is thought to have evolved many times independently from a radially symmetrical ancestral condition, yet the molecular changes underlying this innovation are unknown. Here, we address this problem by investigating the action of a key regulator of floral asymmetry, CYCLOIDEA (CYC), in species with asymmetric and symmetric flowers. We show that CYC encodes a DNA-binding protein that recognises sites in a downstream target gene RADIALIS (RAD) in Antirrhinum. The interaction between CYC and RAD can be reconstituted in Arabidopsis, which has radially symmetrical flowers. Overexpression of CYC in Arabidopsis modifies petal and leaf development, through changes in cell proliferation and expansion at various stages of development. This indicates that developmental target processes are influenced by CYC in Arabidopsis, similar to the situation in Antirrhinum. However, endogenous RAD-like genes are not activated by CYC in Arabidopsis, suggesting that co-option of RAD may have occurred specifically in the Antirrhinum lineage. Taken together, our results indicate that floral asymmetry may have arisen through evolutionary tinkering with the strengths and pattern of connections at several points in a gene regulatory network.  相似文献   

18.
19.
To identify transposons that may be of use for mutagenesis we investigated the genetic molecular basis of a case of flower colour variegation in Linaria, a close relative of the model species Antirrhinum majus. We show that this variegation is attributable to an unstable mutant allele of the gene encoding dihydroflavonol-4-reductase, one of the enzymes required for anthocyanin biosynthesis. This allele carries an insertion of a transposon belonging to the CACTA family (Tl1, Transposon Linaria 1) which blocks its expression thus conferring an ivory flower colour phenotype. Tl1 is occasionally excised in dividing epidermal cells to produce clonal patches of red tissue on the ivory background, and in cells giving rise to gametes to generate reversion alleles conferring a fully coloured phenotype. This finding may open the way for targeted transposon-mutagenesis in Linaria, and hence for using this genus in comparative genetic studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号