首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modulation of functional activities in cultured rat hepatocytes   总被引:8,自引:0,他引:8  
Rat hepatocytes isolated by enzymatic dissociation of the liver must attach in order to survive for more than a few hours. In conventional culture conditions, they rapidly lose their highly differentiated functions, e.g. adult isozymic forms, enzyme response to specific hormones and cytochrome P-450-dependent monooxygenase activities. Incompletely differentiated cells such as perinatal and regenerating hepatocytes, can transiently exhibit a more differentiated state. Therefore, regulation of hepatic functions, particularly enzyme activities cannot be studied for more than a few days. Hepatocyte survival rate and maintenance of specific functions are dependent on nutrient composition of the medium as well as the substrate. Complex matrices, particularly that derived from the connective liver biomatrix, appear to have an important favorable effect. However, regardless of culture conditions specific functions cannot be quantitatively maintained for more than several days. Recent observations strongly suggest that such a problem may be overcome by mimicking in vivo specific cell-cell interactions. Thus when co-cultured with a liver epithelial cell line, probably derived from biliary ductular cells, adult hepatocytes remain able to synthesize high levels of albumin and to conjugate drugs. In these conditions, the cells secrete an abundant heterogeneous extracellular material. The co-cultures can be maintained in a serum-free medium and specific liver functions can be altered experimentally. Such a model could be appropriate for studying long-term induction and modulation of liver enzyme activities under defined experimental conditions.  相似文献   

2.
Summary Isolated hepatocytes from adult rat liver were prepared after dissociation of the liver with EDTA. The morphological appearance, viability (94.5%) and yield (1.76.107 cells/g liver) compare well with those of previously described methods using collagenase. Differentiated functions of the hepatocytes in primary culture such as albumin secretion (10.9 μg/mg cell protein/d) and triglyceride synthesis and secretion are maintained. Induction of triglyceride synthesis and secretion by oleic acid takes place to an extent similar to that observed in vivo and liver perfusion. Particles with a lipid composition resembling circulating very low density lipoproteins are secreted into the medium. These characteristics demonstrate the ability of hepatocytes isolated with EDTA and subsequently used in primary culture to retain complex and highly differentiated functions of the intact liver.  相似文献   

3.
The conditions for stimulation of ornithine decarboxylase (ODC) and DNA synthesis in primary monolayer cultures of non-growing, highly differentiated hepatocytes from adult rats were compared. The syntheses of ODC and DNA were not stimulated by hormones on the 1st day of culture, but they were induced markedly by insulin (10−8 M) and epidermal growth factor (EGF, 0.1 μg/ml) in cells cultured for 40 h. The effects of insulin and EGF were synergistic, and the ODC activity as well as the DNA synthesis in the presence of these hormones was comparable to that of cultured hepatocytes from partially hepatectomized liver. Other factors had different effects on the two processes. Dexamethasone induced ODC slightly, but it inhibited DNA synthesis strongly. Putrescine inhibited ODC activity, but it had no effect on DNA synthesis. Asparagine and glutamine induced ODC activity, but they inhibited DNA synthesis; their inhibitory effects on DNA synthesis were specific to primary cultured liver cells and were not seen in an established rat liver cell line or in mouse L cells. These results show that although there is some correlation between ODC induction and DNA synthesis, the former is not essential for cell growth. There was no indication of cell division under conditions where maximal ODC induction and DNA synthesis were observed. Cytofluorometry of cells treated with insulin and EGF showed that the DNA content increased from 2 N to 4 N, and to 8 N in some cells. Therefore, under the present culture conditions, mature liver cells could enter G2 phase through S phase, but could not enter M phase.  相似文献   

4.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

5.
Summary Rat parenchymal hepatocytes isolated with collagenase were cultured as monolayers in Williams medium E supplemented with calf serum. Freshly isolated cells showed very low activities of various liver functions, and they had to be cultured for 6-24 h to allow recovery of these functions. Insulin and dexamethasone greatly increased cell viability in primary culture. After culture for 24 h, these cells showed various liver functions as seen in vivo and responded well to various added hormones and amino acids. The concentrations of amino acids in the medium regulated synthesis of serum proteins and insulin stimulated lipogenesis, which in turn regulated synthesis of lipoproteins. Insulin also stimulated glycogen synthesis and the stimulation was parallel with the number of insulin receptors. Glucagon stimulated glycogenolysis and its stimulation involved the function of the cytoskeleton. Glucagon and dexamethasone induced various enzymes of amino acid catabolism, such as tryptophan oxygenase, tyrosine aminotransferase and serine dehydratase. These inductions were inhibited by insulin or catecholamine. The effect of catecholamine was due to its -adrenergic action. The -action of isoproterenol was low in freshly isolated cells, but increased during culture of the cells. Acquirement of hormonal responses during neonatal development can be studied in this culture system. Mature hepatocytes in culture are usually quiescent, but when insulin and epidermal growth factor were added, DNA synthesis by the cells increased markedly and they showed density-dependent growth. In this culture system, serum could be omitted for 2 days when the dishes were coated with fibronectin without appreciable change of functions, but serum was needed for longer culture of the cells. A factor that increased cell survival was found in serum and in pituitary gland.These results show that hepatocytes in primary culture are a simple and useful system for studies of liver functions in vitro and related works were also reviewed.  相似文献   

6.
Adult rat hepatocytes aggregated to form floating multicellular spheroids when cultured in Primaria dishes, which have a positively charged surface, in serum-free Williams' medium E (WE) supplemented with insulin and epidermal growth factor (EGF). These hormones were essential for maintenance of the spheroids, whereas the size of the spheroids depended on the inoculum cell density. The spheroids retained in vivo levels of expressions of albumin and glucokinase and synthesized scarcely any DNA even in the presence of insulin and EGF. On transfer to type I collagen-coated dishes, the spheroids gradually disaggregated and the cells formed monolayers, in which the expressions of albumin and glucokinase were suppressed and DNA synthesis and hexokinase activity were increased. DNA synthesis of hepatocytes in monolayer culture was maximal 24 hr after transfer of the spheroids, ~80% of the hepatocyte nuclei were labelled with bromodeoxyuridine during culture for 48 hr, and the mitotic index was ~70% after 60 hr. These results suggest that, in spheroids, hepatocytes remained in the G0 phase, but that when they formed monolayers, they progressed to the G1 phase and proceeded through the cell cycle in the presence of insulin and EGF. This work shows that the cell cycle of hepatocytes in culture can be manipulated by providing conditions for quiescence as spheroids or growth as monolayers and that the shape of hepatocytes is important for regulating their growth and liver-specific functions. © 1993 Wiley-Liss, Inc.  相似文献   

7.
For long-term maintenance of functional hepatocytes in primary culture, a new culture system with chemically modified type-I collagen gel was developed. Isolated hepatocytes spread as flat cells and rapidly lost their viability and functions when cultured on native collagen gel. In contrast, they survived for several weeks when cultured on collagen gels that had been modified by treatment with sodium-borohydride (NaBH4) or by digestion with pepsin, which resulted in destruction of crosslinking of collagen fibers and marked decrease in meachanical strength of the gels. These long-lived cells were round and aggregated and maintained high levels of various differentiated liver functions including albumin secretion and activities of tyrosine aminotransferase and P450. Moreover on collagen gels modified by treatment with NaBH4 or pepsin, the cell showed less DNA synthesis in response to mitogenic stimulation than cells cultures on gel containing native collagen. Interestingly, crosslinking of these chemically modified gels with D-ribose resulted in changes in various phenotypes of hepatocytes cultures on them including shape, longevity, and functions expressed when the cells were cultured on native collagen gel, suggesting that the effect of modification of the collagen gel is reversible. Thus the structure of collagen gels, probably due to the degree of crosslinking, seems to affect the morphology, maintenance of differentiated functions, and growth of primary cultured hepatocytes.  相似文献   

8.
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver‐specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell‐cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model—C3A cells.  相似文献   

9.
Hepatocyte transplantation (HTX) could be an attractive treatment for patients with liver failure and liver-based metabolic disease. Human primary hepatocytes are ideal in this modality, but the shortage of human livers available for hepatocyte isolation severely limits the use of this form of therapy. A tightly regulated human hepatocyte cell line that grows economically in culture and exhibits differentiated liver functions would be an attractive alternative to the primary human hepatocytes. To test the feasibility, human hepatocytes were immortalized by a retroviral vector expressing simian virus 40 large T antigen and herpes simplex virus-thymidine kinase. A highly differentiated immortal hepatocyte line NKNT-3 was established. NKNT-3 cells grew in chemically defined serum-free medium, retained highly differentiated liver functions, and were sensitivity to ganciclovir as a prodrug. Essentially unlimited availability of NKNT-3 cells may be clinically useful for HTX and bioartificial liver.  相似文献   

10.
Liver parenchymal cells cultured in serum-free medium may retain their ability to synthesize glycogen in response to insulin. Specific hormone requirements are needed by hepatocytes to retain the biochemical pattern of mature cells. Insulin supplementation of culture medium seems to be essential to maintain the glycogen synthesis rate of cultured hepatocytes. The continuous presence of dexamethasone amplified the insulin-induced glycogen synthesis. Cytophotometric analysis showed differences in the way that individual cells accumulate glycogen in response to insulin stimulus, which indicates that liver parenchymal cells in culture are functionally heterogeneous.  相似文献   

11.
Regulation of the activity and synthesis of malic enzyme in 3T3-L1 cells   总被引:1,自引:0,他引:1  
Malic enzyme activity in differentiated 3T3-L1 cells was about 20-fold greater than activity in undifferentiated cells. A new steady-state level was achieved about 8 days after initiating differentiation of confluent cultures with a 2-day exposure to dexamethasone, isobutylmethylxanthine, and insulin. This increase in enzyme activity resulted from an increase in the mass of malic enzyme as detected by immunotitration of enzyme activity with goat antiserum directed against purified rat liver malic enzyme. Malic enzyme synthesis was undetectable in undifferentiated cells and increased to about 0.2% of soluble protein in differentiated cells, suggesting that the increase in enzyme mass was due primarily to an increase in enzyme synthesis. Thyroid hormone, a potent stimulator of malic enzyme activity in hepatocytes in culture and in liver and adipose tissue in intact animals, decreased or increased malic enzyme activity in differentiating 3T3-L1 cells by about 40% when it was removed or added to the medium, respectively. Insulin, another physiologically important regulator of malic enzyme activity in vivo, had no effect on the initial rate of accumulation of malic enzyme activity in the differentiating cells and caused a 30 to 40% decrease in the final level of enzyme activity in the fully differentiated cells. Cyclic AMP, a potent inhibitor of malic enzyme synthesis in hepatocytes in culture, inhibited this process in 3T3-L1 cells by 30%. Malic enzyme is like several other enzymes in that the large increase in its concentration which accompanies differentiation of 3T3-L1 cells is due to increased synthesis of enzyme protein. However, the hormonal modulation of malic enzyme characteristic of liver and adipose tissue in intact animals does not appear to occur in differentiated 3T3-L1 cells, suggesting that differentiated 3T3-L1 cells may not be an appropriate model system in which to study the hormonal modulation of malic enzyme that occurs in liver and adipose tissue of intact animals.  相似文献   

12.
Summary Hepatocytes were isolated from human fetal liver in order to analyze the direct effects of growth factors and hormones on human hepatocyte proliferation and function. Mechanical fragmentation and then dissociation of fetal liver tissue with a collagenase/dispase mixture resulted in high yield and viability of hepatocytes. Hepatocytes were selected in arginine-free, ornithine-supplemented medium and defined by morphology, albumin production and ornithine uptake into cellular protein. A screen of over twenty growth factors, hormones, mitogenic agents and crude organ and cell extracts for effect on the stimulation of hepatocyte growth revealed that EGF, insulin, dexamethasone, and factors concentrated in bovine neural extract and hepatoma cell-conditioned medium supported attachment, maintenance and growth of hepatocytes on a collagen-coated substratum. The population of cells selected and defined as differentiated hepatocytes had a proliferative potential of about 4 cumulative population doublings. EGF and insulin synergistically stimulated DNA synthesis in the absence of other hormones and growth factors. Although neural extracts enhanced hepatocyte number, no effect on DNA synthesis of neural extracts or purified heparin-binding growth factors from neural extracts could be demonstrated in the absence or presence of defined hormones, hepatoma-conditioned medium or serum. Hepatoma cell-conditioned medium had the largest impact on both hepatocyte cell number and DNA synthesis under all conditions. Dialyzed serum protein (1 mg/ml) at 10 times higher protein concentration had a similar effect to hepatoma cell-conditioned medium (100 μg/ml). The results suggest that hepatoma cell conditioned medium may be a concentrated and less complicated source than serum for purification and characterization of additional normal hepatocyte growth factors. This work was supported by NIH grant DK35310. Editor’s statement Many investigators have struggled with the special problems associated with culture of differentiated hepatocytes. In this paper attention is given to the specific growth factor requirements for fetal human hepatocytes. The observation that factors from hepatoma conditioned medium or neural extracts enhanced the growth of the cells may indicate that additional growth factors are to be identified that are important in the survival and proliferation of hepatocytes, and may also indicate that the malignant transformation of these cells may involve the production of autocrine growth stimulators.  相似文献   

13.
Synthesis of oncofetal serum protein alpha-fetoprotein (AFP) may be reexpressed in adult differentiated mouse hepatocytes both in regenerating liver and in primary monolayer culture of intact adult liver. We have found that appearance of AFP in these cultures was strongly correlated with the loss of junctional communication between hepatocytes as tested by the dye transfer method. When in hepatocyte culture the gradient of cell density was formed, and the cells in the center of the dense monolayer retained an epithelial morphology and junctional communication and were AFP-negative during 5 days of culture. At the periphery of the monolayer hepatocytes lost junctional communication by the third day of cultivation. They acquired fibroblast-like morphology, formed multilayered sheets, and started to produce AFP. These findings suggest that reexpression of AFP synthesis may be regulated through a process related to "contact inhibition" and junctional communication might play an important role in the phenomenon.  相似文献   

14.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   

15.
16.
Regulation of mouse haptoglobin synthesis   总被引:2,自引:0,他引:2       下载免费PDF全文
A cloned line of mouse hepatoma cells (Hepa-1) responded to treatment with dexamethasone by a 30-80-fold increase in synthesis and secretion of functional haptoglobin. Under the same conditions, the production of albumin was only slightly elevated whereas that of alpha 1-fetoprotein was reduced by 50%. The hormone concentration for half-maximal stimulation of haptoglobin synthesis was between 1 and 2 X 10(-8) M. The time course of induction is characteristic for a glucocorticoid- regulated protein. Cell-free translation of RNA indicated an increase in the amount of functional haptoglobin mRNA that can account for the change in the protein production. To correlate our findings on Hepa-1 cells with those on nontransformed liver cells, we tested the hormonal response of isolated hepatocytes in tissue culture. Haptoglobin was first synthesized and secreted by hepatocytes from 17-19-d-old fetuses. But neither prenatal nor adult hepatocytes showed a dexamethasone- dependent increase in haptoglobin synthesis. However, when several independent clones of hybrid cells formed from adult mouse hepatocytes and rat hepatoma cells were treated with dexamethasone, the synthesis of mouse haptoglobin was in all cases elevated. It appears that haptoglobin expression in mouse liver cells is potentially sensitive to glucocorticoids, but this modulation is manifested only in transformed cells and their derivatives.  相似文献   

17.
18.
Cultured Ito cells of rat liver express the alpha 2-macroglobulin gene   总被引:1,自引:0,他引:1  
Ito cells were isolated from rat liver and kept in culture for up to 13 days. The capability of the Ito cells to synthesize alpha 2-macroglobulin was analyzed at different times after isolation and by pulse-chase experiments. Newly synthesized alpha 2-macroglobulin was determined by immunoprecipitation followed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and fluorography. alpha 2-Macroglobulin synthesis was hardly detectable in Ito cells and their media 3 days after plating. However, 5-11 days after the isolation of the cells, increasing amounts of alpha 2-macroglobulin were synthesized. The results of pulse-chase experiments performed on day 7 showed that radioactively labeled alpha 2-macroglobulin decreased in the intracellular compartment and increased in the culture medium. alpha 2-Macroglobulin was identified by immunoprecipitation and sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing and non-reducing conditions. Furthermore, when unlabeled alpha 2-macroglobulin was added during the immunoprecipitation, a competition was observed. Incubation of pancreatic elastase with culture medium of rat Ito cells or rat hepatocytes led to the same cleavage products as found with alpha 2-macroglobulin. alpha 2-Macroglobulin-specific mRNA could be demonstrated by Northern blot analysis of total RNA extracted from rat Ito cells. Under the conditions where alpha 2-macroglobulin was synthesized in Ito cells, no synthesis of alpha 1-macroglobulin, alpha 1-inhibitor 3, alpha 1-proteinase inhibitor, alpha 1-acid glycoprotein, alpha 1-acute-phase globulin (T-kininogen) and albumin could be demonstrated. It is concluded that alpha 2-macroglobulin is a true secretory protein of rat Ito cells in culture. This could be of importance for collagen metabolism in liver diseases.  相似文献   

19.
The present study succeeded for the first time in cultivating for more than 2 months human normal hepatocytes which showed a high growth potential and expressed their differentiated phenotypes. Constituents of culture medium were critical for this culture, and the medium optimized for their growth contained fresh human serum, fetal bovine serum, Swiss 3T3-cell conditioned medium, L-ascorbic acid 2-phosphate, epidermal growth factor, nicotinamide, and dimethyl sulfoxide. Hepatocytes steadily replicated and formed colonies which continued to increase in size up to around 35 days. The number of hepatocytes in the most replicative colonies increased 17-fold during 31 days. Cells in colonies expressed normal differentiated hepatocytic phenotypes for as long as 35 days. These hepatocytes retained normal liver functions at least for 70 days such as to secrete albumin, and to metabolize lidocaine and D-galactose.  相似文献   

20.
Since methods to disperse and culture hepatocytes were developed 15 years ago, numerous investigations have shown that primary cultures of mature hepatocytes retain most liver functions and respond as well to various hormones as those in vivo. Thus they are the most suitable system in vitro for studies on the liver. Moreover, recently it was found that differentiated hepatocytes in culture can grow under certain conditions and that this growth is regulated not only by several hormones, such as insulin, epidermal growth factor and serum growth factor, but also by a cell membrane factor and proteins in the environmental matrix through cell contact. This article describes the biochemical characterization of regulatory factors for hepatocyte growth and functions and their reciprocal expression. The mechanisms of liver regeneration, differentiation and carcinogenesis and the importance of the tissue architecture for these events are discussed mainly on the basis of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号