首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza A virus causes recurring seasonal epidemics and occasional influenza pandemics. Because of changes in envelope glycoprotein Ags, neutralizing Abs induced by inactivated vaccines provide limited cross-protection against new viral serotypes. However, prior influenza infection induces heterosubtypic immunity that accelerates viral clearance of a second strain, even if the external proteins are distinct. In mice, cross-protection can also be elicited by systemic immunization with the highly conserved internal nucleoprotein (NP). Both T lymphocytes and Ab contribute to such cross-protection. In this paper, we demonstrate that anti-NP IgG specifically promoted influenza virus clearance in mice by using a mechanism involving both FcRs and CD8(+) cells. Furthermore, anti-NP IgG rescued poor heterosubtypic immunity in B cell-deficient mice, correlating with enhanced NP-specific CD8 T cell responses. Thus, Ab against this conserved Ag has potent antiviral activity both in naive and in influenza-immune subjects. Such antiviral activity was not seen when mice were vaccinated with another internal influenza protein, nonstructural 1. The high conservation of NP Ag and the known longevity of Ab responses suggest that anti-NP IgG may provide a critically needed component of a universal influenza vaccine.  相似文献   

2.
Influenza A virus is a negative-strand segmented RNA virus in which antigenically distinct viral subtypes are defined by the hemagglutinin (HA) and neuraminidase (NA) major viral surface proteins. An ideal inactivated vaccine for influenza A virus would induce not only highly robust strain-specific humoral and T-cell immune responses but also cross-protective immunity in which an immune response to antigens from a particular viral subtype (e.g., H3N2) would protect against other viral subtypes (e.g., H1N1). Cross-protective immunity would help limit outbreaks from newly emerging antigenically novel strains. Here, we show in mice that the addition of cationic lipid/noncoding DNA complexes (CLDC) as adjuvant to whole inactivated influenza A virus vaccine induces significantly more robust adaptive immune responses both in quantity and quality than aluminum hydroxide (alum), which is currently the most widely used adjuvant in clinical human vaccination. CLDC-adjuvanted vaccine induced higher total influenza virus-specific IgG, particularly for the IgG2a/c subclass. Higher levels of multicytokine-producing influenza virus-specific CD4 and CD8 T cells were induced by CLDC-adjuvanted vaccine than with alum-adjuvanted vaccine. Importantly, CLDC-adjuvanted vaccine provided significant cross-protection from either a sublethal or lethal influenza A viral challenge with a different subtype than that used for vaccination. This superior cross-protection afforded by the CLDC adjuvant required CD8 T-cell recognition of viral peptides presented by classical major histocompatibility complex class I proteins. Together, these results suggest that CLDC has particular promise for vaccine strategies in which T cells play an important role and may offer new opportunities for more effective control of human influenza epidemics and pandemics by inactivated influenza virus vaccine.  相似文献   

3.
Seasonal influenza epidemics recur due to antigenic drift of envelope glycoprotein antigens and immune evasion of circulating viruses. Additionally, antigenic shift can lead to influenza pandemics. Thus, a universal vaccine that protects against multiple influenza virus strains could alleviate the continuing impact of this virus on human health. In mice, accelerated clearance of a new viral strain (cross-protection) can be elicited by prior infection (heterosubtypic immunity) or by immunization with the highly conserved internal nucleoprotein (NP). Both heterosubtypic immunity and NP-immune protection require antibody production. Here, we show that systemic immunization with NP readily accelerated clearance of a 2009 pandemic H1N1 influenza virus isolate in an antibody-dependent manner. However, human immunization with trivalent inactivated influenza virus vaccine (TIV) only rarely and modestly boosted existing levels of anti-NP IgG. Similar results were observed in mice, although the reaction could be enhanced with adjuvants, by adjusting the stoichiometry among NP and other vaccine components, and by increasing the interval between TIV prime and boost. Importantly, mouse heterosubtypic immunity that had waned over several months could be enhanced by injecting purified anti-NP IgG or by boosting with NP protein, correlating with a long-lived increase in anti-NP antibody titers. Thus, current immunization strategies poorly induce NP-immune antibody that is nonetheless capable of contributing to long-lived cross-protection. The high conservation of NP antigen and the known longevity of antibody responses suggest that the antiviral activity of anti-NP IgG may provide a critically needed component of a universal influenza vaccine.  相似文献   

4.
Punctuated antigenic change is believed to be a key element in the evolution of influenza A; clusters of antigenically similar strains predominate worldwide for several years until an antigenically distant mutant emerges and instigates a selective sweep. It is thought that a region of East-Southeast Asia with year-round transmission acts as a source of antigenic diversity for influenza A and seasonal epidemics in temperate regions make little contribution to antigenic evolution. We use a mathematical model to examine how different transmission regimes affect the evolutionary dynamics of influenza over the lifespan of an antigenic cluster. Our model indicates that, in non-seasonal regions, mutants that cause significant outbreaks appear before the peak of the wild-type epidemic. A relatively large proportion of these mutants spread globally. In seasonal regions, mutants that cause significant local outbreaks appear each year before the seasonal peak of the wild-type epidemic, but only a small proportion spread globally. The potential for global spread is strongly influenced by the intensity of non-seasonal circulation and coupling between non-seasonal and seasonal regions. Results are similar if mutations are neutral, or confer a weak to moderate antigenic advantage. However, there is a threshold antigenic advantage, depending on the non-seasonal transmission intensity, beyond which mutants can escape herd immunity in the non-seasonal region and there is a global explosion in diversity. We conclude that non-seasonal transmission regions are fundamental to the generation and maintenance of influenza diversity owing to their epidemiology. More extensive sampling of viral diversity in such regions could facilitate earlier identification of antigenically novel strains and extend the critical window for vaccine development.  相似文献   

5.
We use a mathematical model to study the evolution of influenza A during the epidemic dynamics of a single season. Classifying strains by their distance from the epidemic-originating strain, we show that neutral mutation yields a constant rate of antigenic evolution, even in the presence of epidemic dynamics. We introduce host immunity and viral immune escape to construct a non-neutral model. Our population dynamics can then be framed naturally in the context of population genetics, and we show that departure from neutrality is governed by the covariance between a strain's fitness and its distance from the original epidemic strain. We quantify the amount of antigenic evolution that takes place in excess of what is expected under neutrality and find that this excess amount is largest under strong host immunity and long epidemics.  相似文献   

6.
Rabies remains a serious problem in China with three epidemics since 1949 and the country in the midst of the third epidemic. Significantly, the control of each outbreak has been followed by a rapid reemergence of the disease. In 2005, the government implemented a rabies national surveillance program that included the collection and screening of almost 8,000 samples. In this work, we analyzed a Chinese dataset comprising 320 glycoprotein sequences covering 23 provinces and eight species, spanning the second and third epidemics. Specifically, we investigated whether the three epidemics are associated with a single reemerging lineage or a different lineage was responsible for each epidemic. Consistent with previous results, phylogenetic analysis identified six lineages, China I to VI. Analysis of the geographical composition of these lineages revealed they are consistent with human case data and reflect the gradual emergence of China I in the third epidemic. Initially, China I was restricted to south China and China II was dominant. However, as the epidemic began to spread into new areas, China I began to emerge, whereas China II remained confined to south China. By the latter part of the surveillance period, almost all isolates were China I and contributions from the remaining lineages were minimal. The prevalence of China II in the early stages of the third epidemic and its established presence in wildlife suggests that it too replaced a previously dominant lineage during the second epidemic. This lineage replacement may be a consequence of control programs that were dominated by dog culling efforts as the primary control method in the first two epidemics. This had the effect of reducing dominant strains to levels comparable with other localized background stains. Our results indicate the importance of effective control strategies for long term control of the disease.  相似文献   

7.
The introduction of a new influenza strain into human circulation leads to rapid global spread. This review summarizes innate and adaptive immunity to influenza viruses, with an emphasis on T-cell responses that provide cross-protection between distinct subtypes and strains. We discuss antigenic variation within T-cell immunogenic peptides and our understanding of pre-existing immunity towards the pandemic A(H1N1) 2009 strain.  相似文献   

8.
When multiple infections are possible during an individual’s lifetime, as with influenza, a host’s history of infection and immunity will determine the result of future exposures. In turn, the suite of varying individual infection histories will shape the population level dynamics of the disease. Exploring the consequences of precisely how immunity is acquired using mathematical models has proven challenging though: if n strains have circulated previously, there are 2n combinations of past infection to consider. However, by using an age-structured mathematical model of a disease with multiple strains, we can examine the population immune profile without explicitly keeping track of all possible infection histories. This framework allows previously unknown consequences of assumptions about immune acquisition to be observed. In particular, we see that ‘original antigenic sin’ can reduce immunity in some age groups: these immune blind spots could be responsible for the unexpectedly high severity of certain past influenza epidemics.  相似文献   

9.
The Spanish influenza virus pandemic of 1918 was responsible for 40 million to 50 million deaths and is antigenically similar to the swine lineage 2009 pandemic influenza virus. Emergence of the 2009 pandemic from swine into humans has raised the possibility that low levels of cross-protective immunity to past shared epitopes could confer protection. In this study, influenza viruslike particles (VLPs) were engineered to express the hemagglutinin (HA) and genes from the 1918 influenza virus to evaluate the duration of cross-protection to the H1N1 pandemic strain by vaccinating young mice (8 to 12 weeks) and then allowing the animals to age to 20 months. This immunity was long lasting, with homologous receptor-blocking antibodies detected throughout the lifespan of vaccinated mice. Furthermore, the 1918 VLPs fully protected aged mice from 2009 pandemic H1N1 virus challenge 16 months after vaccination. Histopathological assessment showed that aged vaccinated mice had significant protection from alveolar infection but less protection of the bronchial tissue than adult vaccinated mice. Additionally, passive transfer of immune serum from aged vaccinated mice resulted in protection from death but not morbidity. This is the first report describing the lifelong duration of cross-reactive immune responses elicited by a 1918 VLP vaccine in a murine model. Importantly, these lifelong immune responses did not result in decreased total viral replication but did prevent infection of the lower respiratory tract. These findings show that immunity acquired early in life can restrict the anatomical location of influenza viral replication, rather than preventing infection, in the aged.  相似文献   

10.
Although it may have profound effects on how researchers seek to tackle many infectious diseases, little is known of the genetic structure of many pathogen populations. Previous models have suggested that if levels of cross-protection are high, parasite populations may be structured into discrete strains with nonoverlapping antigenic repertoires, even among populations that reproduce sexually. Here, I consider a discrete model of the coevolution of parasites with host-acquired immunity. In this model, if the effective recombination rate is low, strain structure can be maintained for very high levels of cross-protection. However, if the effective recombination rate is higher, this strain structure can no longer be maintained. The effective recombination rate is affected by the actual recombination rate between immunologically selected loci, the proportion of individuals that reproduce sexually, whether recombination occurs inside or outside of the host or vector, and the level of cross-protection. The model predicts that for Plasmodium falciparum, where reproduction occurs inside of a vector, we expect to see strain structure in areas of low transmission but not in areas of high transmission. Strain structure is unlikely to be seen in parasites that reproduce outside of a host or vector, such as Strongyloides ratti.  相似文献   

11.
Recent serological studies of seasonal influenza A in humans suggest a striking characteristic profile of immunity against age, which holds across different countries and against different subtypes of influenza. For both H1N1 and H3N2, the proportion of the population seropositive to recently circulated strains peaks in school-age children, reaches a minimum between ages 35–65, then rises again in the older ages. This pattern is little understood. Variable mixing between different age classes can have a profound effect on disease dynamics, and is hence the obvious candidate explanation for the profile, but using a mathematical model of multiple influenza strains, we see that age dependent transmission based on mixing data from social contact surveys cannot on its own explain the observed pattern. Instead, the number of seropositive individuals in a population may be a consequence of ‘original antigenic sin’; if the first infection of a lifetime dominates subsequent immune responses, we demonstrate that it is possible to reproduce the observed relationship between age and seroprevalence. We propose a candidate mechanism for this relationship, by which original antigenic sin, along with antigenic drift and vaccination, results in the age profile of immunity seen in empirical studies.  相似文献   

12.
The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic) immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI) assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA) from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum) were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV) of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA’s, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA’s. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the mPlex-Flu assay provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination.  相似文献   

13.
14.
 We develop a model that describes the dynamics of a finite number of strains that confer partial cross-protection among strains. The immunity structure of the host population is captured by an index-set notation where the index specifies the set of strains to which the host has been exposed. This notation allows us to derive threshold conditions for the invasion of a new strain and to show the existence of an endemic multi-strain equilibrium in a special case. The dynamics of systems consisting of more than two strains can exhibit sustained oscillations caused by an overshoot in the immunity to a specific strain if cross-protection is sufficiently strong. Received 15 January 1996; received in revised form 24 June 1996  相似文献   

15.

Background

Every year the human population encounters epidemic outbreaks of influenza, and history reveals recurring pandemics that have had devastating consequences. The current work focuses on the development of a robust algorithm for detecting influenza strains that have a composite genomic architecture. These influenza subtypes can be generated through a reassortment process, whereby a virus can inherit gene segments from two different types of influenza particles during replication. Reassortant strains are often not immediately recognised by the adaptive immune system of the hosts and hence may be the source of pandemic outbreaks. Owing to their importance in public health and their infectious ability, it is essential to identify reassortant influenza strains in order to understand the evolution of this virus and describe reassortment pathways that may be biased towards particular viral segments. Phylogenetic methods have been used traditionally to identify reassortant viruses. In many studies up to now, the assumption has been that if two phylogenetic trees differ, it is because reassortment has caused them to be different. While phylogenetic incongruence may be caused by real differences in evolutionary history, it can also be the result of phylogenetic error. Therefore, we wish to develop a method for distinguishing between topological inconsistency that is due to confounding effects and topological inconsistency that is due to reassortment.

Results

The current work describes the implementation of two approaches for robustly identifying reassortment events. The algorithms rest on the idea of significance of difference between phylogenetic trees or phylogenetic tree sets, and subtree pruning and regrafting operations, which mimic the effect of reassortment on tree topologies. The first method is based on a maximum likelihood (ML) framework (MLreassort) and the second implements a Bayesian approach (Breassort) for reassortment detection. We focus on reassortment events that are found by both methods. We test both methods on a simulated dataset and on a small collection of real viral data isolated in Hong Kong in 1999.

Conclusions

The nature of segmented viral genomes present many challenges with respect to disease. The algorithms developed here can effectively identify reassortment events in small viral datasets and can be applied not only to influenza but also to other segmented viruses. Owing to computational demands of comparing tree topologies, further development in this area is necessary to allow their application to larger datasets.
  相似文献   

16.
We analyze an epidemiological model consisting of a linear chain of three cocirculating influenza A strains that provide hosts exposed to a given strain with partial immune cross-protection against other strains. In the extreme case where infection with the middle strain prevents further infections from the other two strains, we reduce the model to a six-dimensional kernel capable of showing self-sustaining oscillations at relatively high levels of cross-protection. Dimensional reduction has been accomplished by a transformation of variables that preserves the eigenvalue responsible for the transition from damped oscillations to limit cycle solutions.  相似文献   

17.
Immunizing potencies of vaccines prepared from various strains of Salmonella were graded by comparing the mortality rate of immunized mice after challenge with highly virulent strains of either Salmonella enteritidis or S. typhimurium. The resistance against this challenge infection was shown to be conferred by joint immunization with a specific factor, which was represented by O specific lipopolysaccharide of smooth strains, and cross-protection factor, which was a major potent factor in live vaccine. The distribution of this cross-protection factor in rough mutants of S. typhimurium was found to be limited to strains which possessed a polysaccharide chain longer than that of glucose1-less mutant. The potency conferring cross-resistance was found to be maintained partly in formalin-killed cells and cell walls of the strains harboring cross-protection factor but not in lipopolysaccharide extracted from such strains.  相似文献   

18.
T cell epitopes have been found to be shared by circulating, seasonal influenza virus strains and the novel pandemic H1N1 influenza infection, but the ability of these common epitopes to provide cross-protection is unknown. We have now directly tested this by examining the ability of live seasonal influenza vaccine (FluMist) to mediate protection against swine-origin H1N1 influenza virus infection. Naive mice demonstrated considerable susceptibility to H1N1 Cal/04/09 infection, whereas FluMist-vaccinated mice had markedly decreased morbidity and mortality. In vivo depletion of CD4(+) or CD8(+) immune cells after vaccination indicated that protective immunity was primarily dependent upon FluMist-induced CD4(+) cells but not CD8(+) T cells. Passive protection studies revealed little role for serum or mucosal Abs in cross-protection. Although H1N1 influenza infection of naive mice induced intensive phagocyte recruitment, pulmonary innate defense against secondary pneumococcal infection was severely suppressed. This increased susceptibility to bacterial infection was correlated with augmented IFN-γ production produced during the recovery stage of H1N1 influenza infection, which was completely suppressed in mice previously immunized with FluMist. Furthermore, susceptibility to secondary bacterial infection was decreased in the absence of type II, but not type I, IFN signaling. Thus, seasonal FluMist treatment not only promoted resistance to pandemic H1N1 influenza infection but also restored innate immunity against complicating secondary bacterial infections.  相似文献   

19.
Three strains ofPenicillium chrysogenum selected for high penicillin yield and of independent lineage were marked with suitable genetical characters prior to the synthesis of several heterozygous diploids. These parental strains had domestic codes, C, D and Y. Two diploids, between differently labelled mutants of strain C and Y, produced similar amounts of penicillin to strain C, which was less than that produced by strain Y. Previous work had indicated that genes responsible for increased penicillin yield were recessive and the present results suggested that such genes in strains C and Y were allelic, apart from the presence of one or more additional recessive mutations leading to greater penicillin production in the higher yielding parent. Three diploids made between mutants of strains D and Y were lower in penicillin yield than either original parent and only in the case of one diploid compared with one of the parental strains was this difference not significant. In strains D and Y, therefore, there may have been some recessive genes concerned with increasing penicillin yield which were non-allelic. However, no first order segregants arising spontaneously or subsequent to X-ray treatment produced higher levels of penicillin than the better yielding original parent in any cross.  相似文献   

20.
Influenza A virus is a serious public health threat. Most recently the 2009/H1N1 pandemic virus had an inherent ability to evade the host's immune surveillance through genetic drift, shift, and genomic reassortment. Immune characterization of 2009/H1N1 utilized monoclonal antibodies, neutralizing sera, and proteomics. Increased age may have provided some degree of immunity, but vaccines against seasonal influenza viruses seldom yield cross-reactive immunity, exemplified by 2009/H1N1. Nonetheless, about 33% of individuals, over the age of 60, had cross-reactive neutralizing antibodies against 2009/H1N1, whereas only 6-9% young adults had these antibodies. Children characteristically had no detectable immunity against 2009/H1N1. Taken together, these observations suggest some degree of immune transference with at least certain strains of virus that have afflicted the human population in past decades. Because internal influenza proteins may exhibit less antigenic variation, it is possible that prior exposure to diverse strains of influenza virus provide some immunity to novel strains, including the recent pandemic strain (swine-avian A/H1N1). Current trends in immunological studies - specifically the modulation of cellular immune surveillance provided by TH17 and Tregs - also support the need for additional proteomic research for characterizing novel translational evidence-based treatment interventions based on cytokine function to help defeat the virus. Timely and critical research must characterize the impact of genetics and epigenetics of oral and systemic host immune surveillance responses to influenza A virus. The continued development and application of proteomics and gene expression across viral strains and human tissues increases our ability to combat the spread of influenza epidemics and pandemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号