首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
The ability of novel cell-permeating peptide molecules derived from the peptide inhibitor of the myosin light chain kinase (MLCK) L-PIK (Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys) to inhibit this kinase in vitro and attenuate the thrombin-induced hyperpermeability of endothelial cell monolayer in culture has been studied. It was found that the compounds [NalphaMeArg1]-L-PIK and [Cit1]-L-PIK possess the inhibitory activity towards MLCK comparable to that of L-PIK and the ability to suppress the hyperpermeability of endothelium, whereas other modifications of L-PIK were less effective. Thus, among de novo synthesized peptides, [NalphaMeArg1]-L-PIK and [Cit1]-L-PIK demonstrate the inhibitory properties of the original peptide L-PIK and additionally surpass it by stability in blood plasma. These peptides may be used in the design of novel antiedemic drugs.  相似文献   

2.
Novel peptides originating from the peptide inhibitor of myosin light chain kinase (MLCK), L-PIK (Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys), have been studied for their ability to attenuate the thrombin-induced hyperpermeability of an endothelial cell monolayer in culture. Peptides [NαMeArg1]-Lys-Lys-Tyr-Lys-Tyr-Arg-(D)Arg8-Lys and H-Arg(NO2)Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys-NH2 (designated PIK2 and PIK4, respectively) appeared to be the most effective inhibitors of endothelial cell monolayer hyperpermeability, and surpassed other known peptide inhibitors of MLCK derived from original L-PIK. Our results validate PIK2 and PIK4 as the leading molecules for the development of novel drugs intended to counteract pathological hyperpermeability of vascular endothelium.  相似文献   

3.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cellular mobility, in particular, endothelial and epithelial permeability. The membrane-penetrative peptide (H-RKKYKYRRK-NH2, L-PIK) is one of the potential MLCK inhibitors for use in humans. Five analogs of L-PIK were synthesized by the solid phase method of peptide synthesis using Fmoc technology. According to 1H NMR, these analogs exhibited increased stability towards degradation in blood plasma. One of the synthesized peptides, L-[MeArg1]PIK, inhibited MLCK activity in vitro, and the inhibition efficacy of L-[MeArg1]PIK was equal to that of L-PIK. The inhibitory effect of the other analogs was lower than that of L-PIK. The L-PIK analog that consisted of D-amino acids was the least active. Thus, we demonstrated the possibility of creating an effective peptide inhibitor of MLCK with increased stability against biodegradation. Such a peptide inhibitor is a promising compound for further pharmacological studies.  相似文献   

4.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell‐permeant peptide Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys (PIK, P eptide I nhibitor of K inase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L ‐PIK in a biological milieu prompts for development of more stable L ‐PIK analogues for use as experimental tools in basic and drug‐oriented biomedical research. Previously, we designed PIK1, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys‐NH2, that was 2.5‐fold more resistant to peptidases in human plasma in vitro than L ‐PIK and equal to it as MLCK inhibitor. In order to further enhance proteolytic stability of PIK inhibitor, we designed the set of six site‐protected peptides based on L ‐PIK and PIK1 degradation patterns in human plasma as revealed by 1H‐NMR analysis. Implemented modifications increased half‐live of the PIK‐related peptides in plasma about 10‐fold, and these compounds retained 25–100% of L ‐PIK inhibitory activity toward MLCK in vitro. Based on stability and functional activity ranking, PIK2, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐D ‐Arg‐Lys‐NH2, was identified as the most stable and effective L ‐PIK analogue. PIK2 was able to decrease myosin light chain phosphorylation in endothelial cells stimulated with thrombin, and this effect correlated with the inhibition by PIK2 of thrombin‐induced endothelial hyperpermeability in vitro. Therefore, PIK2 could be used as novel alternative to other cell‐permeant inhibitors of MLCK in cell culture‐based and in vivo studies where MLCK catalytic activity inhibition is required. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.

Background  

Thymosin α1 (Tα1), a 28-amino acid N α -acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining N α -acetylation. In this study, we describe a novel production process for N α -acetylated Tα1 in Escherichia coli.  相似文献   

6.
Syntheses are described of the nociceptin (1–13) amide [NC(1–13)-NH2] and of several analogues in which either one or both the phenylalanine residues (positions 1 and 4), the arginine residues (positions 8 and 12) and the alanine residues (positions 7 and 11) have been replaced by N-benzyl-glycine, N-(3-guanidino-propyl)-glycine and β-alanine, respectively. The preparation is also described of NC(1–13)-NH2 analogues in which either galactose or N-acetyl-galactosamine are β-O-glycosidically linked to Thr5 and/or to Ser10. Preliminary pharmacological experiments on mouse vas deferens preparations showed that Phe4, Thr5, Ala7 and Arg8 are crucial residues for OP4 receptor activation. Manipulation of Phe1 yielded peptides endowed with antagonist activity but [Nphe1] NC(1–13)-NH2 acted as an antagonist still possessing weak agonist activity. Introduction of the βAla residue either in position 7 or 11 of the [Nphe1] NC(1–13)-NH2 sequence, abolished any residual agonist activity and [Nphe1, βAla7] NC(1–13)-NH2 and [Nphe1, βAla11] NC(1–13)-NH2 acted as competitive antagonists only. Modification of both Ala7 and Ala11 abolished the antagonist activity of [Nphe1]NC(1–13)-NH2 probably by hindering receptor binding. Changes at positions 10 and 11 gave analogues still possessing agonist activity. [Ser(βGal)10] NC(1–13)-NH2 displayed an activity comparable with that of NC(1–13)-NH2, [Ser(βGalNAc)10] NC(1–13)-NH2 and [βAla11] NC(1–13)-NH2 were five and 10 times less active, respectively.The α-amino acid residues are of the l-configuration. Standard abbreviations for amino acid derivatives and peptides are according to the suggestions of the IUPAC-IUB Commission on Biochemical Nomeclature (1984), Eur. J. Biochem. 138, 9–37. Abbreviations listed in the guide published in (2003), J. Peptide Sci. 9, 1–8 are used without explanation.  相似文献   

7.
As a regulator of smooth muscle contractility, zipper-interacting protein kinase (ZIPK) appears to phosphorylate the regulatory myosin light chain (RLC20), directly or indirectly, at Ser19 and Thr18 in a Ca2+-independent manner. The calmodulin-binding and autoinhibitory domain of myosin light chain kinase (MLCK) shares similarity to a sequence found in ZIPK. This similarity in sequence prompted an investigation of the SM1 peptide, which is derived from the autoinhibitory region of MLCK, as a potential inhibitor of ZIPK. In vitro studies showed that SM1 is a competitive inhibitor of a constitutively active 32-kDa form of ZIPK with an apparent Ki value of 3.4 µM. Experiments confirmed that the SM1 peptide is also active against full-length ZIPK. In addition, ZIPK autophosphorylation was reduced by SM1. ZIPK activity is independent of calmodulin; however, calmodulin suppressed the in vitro inhibitory potential of SM1, likely as a result of nonspecific binding of the peptide to calmodulin. Treatment of ileal smooth muscle with exogenous ZIPK was accompanied by an increase in RLC20 diphosphorylation, distinguishing between ZIPK [and integrin-linked kinase (ILK)] and MLCK actions. Administration of SM1 suppressed steady-state muscle tension developed by the addition of exogenous ZIPK to Triton-skinned rat ileal muscle strips with or without calmodulin depletion by trifluoperazine. The decrease in contractile force was associated with decreases in both RLC20 mono- and diphosphorylation. In summary, we present the SM1 peptide as a novel inhibitor of ZIPK. We also conclude that the SM1 peptide, which has no effect on ILK, can be used to distinguish between ZIPK and ILK effects in smooth muscle tissues. inhibitory peptide; calcium sensitization  相似文献   

8.
9.
The retro-N α-carboxymethyl histidine moiety, short (N αHis)Ac, functions as an efficient chelator for the 99mTc(CO)3 core which allows the labeling of the peptides with a very high specific activity. However as a general consequence of the neutral [99mTc(CO)3] (N αHis)Ac-complex, undesired accumulation in kidney and liver may be high. In order to improve the pharmacokinetic properties of the radiolabeled peptides containing this chelate, attempts have been made to conjugate a carbohydrate using the Maillard reaction. Since the (N αHis)Ac moiety has an unusually reactive N α, various chemical strategies have been explored to perform the Maillard reaction followed by the Amadori rearrangement on peptides containing this chelator. This indicated that a selective protection of the secondary nitrogen in the chelator is necessary.Australian Peptide Conference Issue.  相似文献   

10.
“Mono-N-methyl scan” is a rational approach for the optimization of the peptide biological properties. N-Methylation of the –CONH– functionality is also a useful tool for discriminating solvent exposed from intramolecularly H-bonded secondary amide groups in peptides. We are currently extending this reaction to linear peptides based on Cα-tetrasubstituted α-amino acids. Following our study on the synthesis and conformation of the mono-N-methylated peptides from Cα-methylated residues, in this work we investigated the N-methylation reaction on homo-peptides to the pentamer level from the Cα-ethylated residue Cα,α-diethylglycine. Under the classical experimental conditions used, exclusively mono-N-methylation (on the N-terminal, acetylated residue) takes place, as unambiguously shown by mass spectrometry, 2D-NMR, and X-ray diffraction techniques. This backbone modification does not seem to involve any significant change in the peptide conformation in the crystalline state. Dedicated to the memory of Prof. Miroslav T. Leplawy (Technical University of Łodz, Poland), who performed the first synthesis of the extremely sterically demanding Cα,α-diethylglycine peptides.  相似文献   

11.
 To understand the dominant association of celiac disease (CD) with the presence of HLA-DQ(α1*0501, β1*0201), the peptide binding characteristics of this molecule were compared with that of the structurally similar, but non-CD-associated DQ(α1*0201, β1*0202) molecule. First, naturally processed peptides were acid-extracted from immuno-affinity-purified DQ molecules of both types. Both molecules contained the Ii-derived CLIP sequence and a particular fragment of the major histocompatibility complex (MHC) class I α chain. Use of truncated analogues of these two peptides in cell-free peptide binding assays indicated that identical peptide frames are used for binding to the two DQ2 molecules. Detailed substitution analysis of the MHC class I peptide revealed identical side chain requirements for the anchor residues at p6 and p7. At p1, p4, and p9, however, polar substitutions (such as N, Q, G, S, and T) were less well tolerated in the case of the DQ(α1*0201, β1*0202) molecule. The most striking difference between the two DQ molecules is the presence of an additional anchor residue at p3 for the DQ(α1*0201, β1*0202) molecule, whereas this residue was found not to be specifically involved in binding of peptides to DQ(α1*0501, β1*0201). Similar results were obtained applying substitution analysis of the CLIP sequence. Molecular modelling of the DQ2 proteins complexed with the MHC class I and CLIP peptide corresponds well with the binding data. The results suggest that both CLIP and the MHC class I peptide bind DQ(α1*0501, β1*0201) and DQ(α1*0201, β1*0202) in a DR-like fashion, following highly similar binding criteria. This detailed characterization of unique peptide binding properties of the CD-associated DQ(α1*0501, β1*0201) molecule should be helpful in the identification of CD-inducing epitopes. Received: 21 March 1997 / Revised: 28 May 1997  相似文献   

12.
Summary The solid-phase synthesis andin vitro assays on the glucose-induced insulin secretion from rat pancreatic islets of Langerhans with six new chimeric peptides were performed. All the peptides were built up of the N-terminal galanin (GAL) fragment or its analogues, linked to the C-terminal portion of substance P (SP) analogues or scyliorhinin I (SCY-I) analogues. Two strong antagonists of the inhibitory effect of galanin on the glucose-induced insulin release were found: [cycloleucine4]GAL(1–13)-SP(5–11)-amide and GAL(1–13)-[L-norleucine10]SCY-I(3–10)-amide.  相似文献   

13.
Posttranslational modifications, e.g. proteolysis, glycosylation, and citrullination regulate chemokine function, affecting leukocyte migration during inflammatory responses. Here, modification of CXCL5/epithelial cell-derived neutrophil-activating protein-78 (ENA-78) by proteases or peptidylarginine deiminases (PAD) was evaluated. Slow CXCL5(1–78) processing by the myeloid cell marker aminopeptidase N/CD13 into CXCL5(2–78) hardly affected its in vitro activity, but slowed down the activation of CXCL5 by the neutrophil protease cathepsin G. PAD, an enzyme with a potentially important function in autoimmune diseases, site-specifically deiminated Arg9 in CXCL5 to citrulline, generating [Cit9]CXCL5(1–78). Compared with CXCL5(1–78), [Cit9]CXCL5(1–78) less efficiently induced intracellular calcium signaling, phosphorylation of extracellular signal-regulated kinase, internalization of CXCR2, and in vitro neutrophil chemotaxis. In contrast, conversion of CXCL5 into the previously reported natural isoform CXCL5(8–78) provided at least 3-fold enhanced biological activity in these tests. Citrullination, but not NH2-terminal truncation, reduced the capacity of CXCL5 to up-regulate the expression of the integrin α-chain CD11b on neutrophils. Truncation nor citrullination significantly affected the ability of CXCL5 to up-regulate CD11a expression or shedding of CD62L. In line with the in vitro results, CXCL5(8–78) and CXCL5(9–78) induced a more pronounced neutrophil influx in vivo compared with CXCL5(1–78). Administration of 300 pmol of either CXCL5(1–78) or [Cit9]CXCL5(1–78) failed to attract neutrophils to the peritoneal cavity. Citrullination of the more potent CXCL5(9–78) lowers its chemotactic potency in vivo and confirms the tempering effect of citrullination in vitro. The highly divergent effects of modifications of CXCL5 on neutrophil influx underline the potential importance of tissue-specific interactions between chemokines and PAD or proteases.  相似文献   

14.
Mechanisms underlying the tissue-specific impact of cardiotonic steroids (CTS) on cell survival and death remain poorly understood. This study examines the role of Na+,K+-ATPase α subunits in death of Madin-Darby canine kidney (MDCK) cells evoked by 24-h exposure to ouabain. MDCK cells expressing a variant of the α1 isoform, CTS-sensitive α1S, were stably transfected with a cDNA encoding CTS-resistant α1R-Na+,K+-ATPase, whose expression was confirmed by RT–PCR. In mock-transfected and α1R-cells, maximal inhibition of 86Rb influx was observed at 10 and 1000 μM ouabain, respectively, thus confirming high abundance of α1R-Na+,K+-ATPase in these cells. Six-hour treatment of α1R-cells with 1000 μM ouabain led to the same elevation of the [Na+]i/[K+]i ratio that was detected in mock-transfected cells treated with 3 μM ouabain. However, in contrast to the massive death of mock-transfected cells exposed to 3 μM ouabain, α1R-cells survived after 24-h incubation with 1000 μM ouabain. Inversion of the [Na+]i/[K+]i ratio evoked by Na+,K+-ATPase inhibition in K+-free medium did not affect survival of α1R-cells but increased their sensitivity to ouabain. Our results show that the α1R subunit rescues MDCK cells from the cytotoxic action of CTS independently of inhibition of Na+,K+-ATPase-mediated Na+ and K+ fluxes and inversion of the [Na+]i/[K+]i ratio.  相似文献   

15.
Huang ZP  Du JT  Su XY  Chen YX  Zhao YF  Li YM 《Amino acids》2007,33(1):85-89
Summary. A concise preparation of N α-Fmoc-N ɛ-(Boc, methyl)-lysine and its application in the synthesis of site-specifically lysine monomethylated peptide is described. N α-Fmoc-N ɛ-(Boc, methyl)-lysine is obtained, via consecutive reductive benzylation and reductive methylation in a one-pot reaction, followed by debenzylation through catalytic hydrogenolysis and Boc protection in another one-pot reaction. A peptide containing monomethylated lysine is successfully synthesized by incorporating N α-Fmoc-N ɛ-(Boc, methyl)-lysine as a building block via solid-phase peptide synthesis.  相似文献   

16.
17.
Summary The preparation of Nα-trityl-amino acids is described. Several derivatives of trifunctional amino acids carrying acid-and base-labile side-chain protecting groups and the trityl group at the Nα position are prepared for first time. The incorporation of Nα-trityl-amino acids into peptide sequences using solid-phase protocols was achieved. The use of the trityl group for the protection of the α-amino group in conjunction with base-labile side-chain protecting groups constitutes a new method for the assembly of peptides in mild conditions.  相似文献   

18.
Synthesis of 3-[4-(N-substituted sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyri-do[3′,2′:4,5]selenolo[3,2-d]pyrimidines,7-[4-(N-substituted sulfamoyl)phenyl]-7,8-dihydro-8-oxo-3,4-diphenylpyrimido[4′,5′:4,5]selenolo [2,3-c]pyridazines and 1-[4-(N-substituted sulfamoyl)phenyl]-1,11-dihydro 11-oxo-4-methylpyrimido[4′,5′:4,5]selenolo[2,3-b]quinolines is reported. 4-Amino-N-pyrimidine-2-ylbenzene sulfonamide (a), 4-amino-N-(2,6-dimethylpyrimidin-4-yl)benzene sulfonamide (b), N-[(4-aminophenyl)sulfonyl] acetamide (c) with N-ethoxymethyleneamino of selenolo pyridine, selenolo pyridazine and selenolo quinoline derivatives respectively were obtained starting from 1-amino-N 4-substituted sulfanilamides. Spectroscopic data (IR, 1H NMR, 13C NMR and Mass spectral) confirmed the structure of the newly synthesized compounds. Substituted pyrimidines, pyridazines and quinolines were screened for antibacterial activity against gram-positive and gram-negative bacteria. Selenolo derivative of N-[(4-aminophenyl)sulfonyl] acetamide (substitutent of sulfacetamide c) showed strong bactericidal effect against all the tested organisms. Selenolo[3,2-d]pyrimidin (substitutent a) showed a good bactericidal effect against Serratia marcescens, Staphylococcus aureus and Escherichia coli. Compounds selenolo[2,3-c]pyridazine (substitutent b), selenolo[2,3-b]quinoline(substitutents c)) exhibited a moderate bactericidal effect against Serratia marcescens. None of the synthesized seleno pyridazines has a considerable antimicrobial activity against the tested organisms. The minimum inhibitory concentration (MIC) of the most active compound-3-[4-(N-acetyl sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyrido[3′,2′:4,5]selenolo [3,2-d]pyrimidine was 10 mg ml−1.  相似文献   

19.
Predatory sea snails from the Conus family produce a variety of venomous small helical peptides called conantokins that are rich in γ-carboxyglutamic acid (Gla) residues. As potent and selective antagonists of the N-methyl-d-aspartate receptor, these peptides are potential therapeutic agents for a variety of neurological conditions. The two most studied members of this family of peptides are con-G and con-T. Con-G has Gla residues at sequence positions 3, 4, 7, 10, and 14, and requires divalent cation binding to adopt a helical conformation. Although both Ca2+ and Mg2+ can fulfill this role, Ca2+ induces dimerization of con-G, whereas the Mg2+-complexed peptide remains monomeric. A variant of con-T, con-T[K7γ] (γ is Gla), contains Gla residues at the same five positions as in con-G and behaves very similarly with respect to metal ion binding and dimerization; each peptide binds two Ca2+ ions and two Mg2+ ions per helix. To understand the difference in metal ion selectivity, affinity, and the dependence on Ca2+ for dimer formation, we report here the structure of the monomeric Cd2+/Mg2+–con-T[K7γ] complex, and, by comparison with the previously published con-T[K7γ]/Ca2+ dimer structure, we suggest explanations for both metal ion binding site specificity and metal-ion-dependent dimerization.  相似文献   

20.
Current enzymatic methods for the analysis of glycated proteins use flavoenzymes that catalyze the oxidative deglycation of fructosyl peptides, designated as fructosyl peptidyl oxidases (FPOXs). However, as FPOXs are oxidases, the signals derived from electron mediator-type electrochemical monitoring based on them are affected by dissolved O2. Improvement of dye-mediated dehydrogenase activity of FPOXs and its application to enzyme electrode construction were therefore undertaken. Saturation mutagenesis study on Asn56 of FPOX from Phaeosphaeria nodorum, produced mutants with marked decreases in the catalytic ability to employ O2 as the electron acceptor, while showing higher dye-mediated dehydrogenase activity employing artificial electron acceptors than the parental enzyme. Thus constructed virtually fructosyl peptide dehydrogenase, Asn56Ala, was then applied to produce an enzyme electrode for the measurement of fructosyl-α N-valyl-histidine (f-αVal-His), the protease-digested product of HbA1c. The enzyme electrode could measure f-αVal-His in the physiological target range in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号