首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological stoichiometry offers a framework for predicting how animal species vary in recycling nutrients, thus providing a mechanism for how animal species identity mediates ecosystem processes. Here we show that variation in the rates and ratios at which 28 vertebrate species (fish, amphibians) recycled nitrogen (N) and phosphorus (P) in a tropical stream supports stoichiometry theory. Mass-specific P excretion rate varied 10-fold among taxa and was negatively related to animal body P content. In addition, the N : P ratio excreted was negatively related to body N : P. Body mass (negatively related to excretion rates) explained additional variance in these excretion parameters. Body P content and P excretion varied much more among taxonomic families than among species within families, suggesting that familial composition may strongly influence ecosystem-wide nutrient cycling. Interspecific variation in nutrient recycling, mediated by phylogenetic constraints on stoichiometry and allometry, illustrates a strong linkage between species identity and ecosystem function.  相似文献   

2.
This study investigates how nutrient cycling rates and ratios vary among fish species, with a particular focus on comparing an ecologically dominant detritivore (gizzard shad) to other fishes in a productive lake. We also examined how nutrient cycling rates are mediated by body size (as predicted by allometry theory), and how variation in nutrient cycling is related to body and food nutrient contents (according to predictions of ecological stoichiometry). As predicted by allometry, per capita nitrogen and phosphorus excretion rates increased and mass-specific excretion rates decreased, with increasing mass. Body phosphorus content was correlated with body mass only in one species, bluegill. Contrary to stoichiometric predictions, there was no relationship between body P and mass-normalized P excretion rate, or between body N:P and excreted N:P, when all individuals of all species were considered.
However, at the species level, we observed some support for a body nutrient content effect on excretion as predicted by stoichiometry theory. For example, gizzard shad had lower body P (high body N:P) and also excreted P at higher rates (lower N:P) than bluegill, which had high body P (lower body N:P). We applied the Sterner (1990) homeostatic stoichiometry model to the two most common species in the study – gizzard shad and bluegill and found that food N:P had a greater effect than consumer body N:P on excreted N:P. This indicates that, in terms of variation among these species, nutrient excretion may be more of a function of food nutrient content than the nutrient content of the consumer. These results suggest that stoichiometry can provide a framework for variation among species in nutrient cycling and for evaluating the ecosystem consequences of biodiversity loss.  相似文献   

3.
1. Fish can play an important role in coupling benthic and pelagic habitats by consuming benthic prey and providing essential nutrients to algae in dissolved form. However, little is known about the factors affecting the magnitude of this nutrient subsidy. 2. Using laboratory and mesocosm experiments we evaluated how varying ingestion rates of bluegill sunfish (Lepomis macrochirus) affects fish excretion rates of both nitrogen (N) and phosphorus (P). During the 10‐week mesocosm experiment, we also evaluated how varying ingestion rates may affect plankton community dynamics, and nutrient flux between pelagic and benthic habitats. Lastly, bioenergetic/mass balance models were used to examine the nutrient stoichiometry of fish body composition and excretion products. 3. Under laboratory conditions, both N and P excretion rates increased with increased ingestion of benthic prey surrogates (earthworms). This effect was more pronounced for N than P. Furthermore, under the more realistic conditions of the mesocosm experiment ingestion rate had no significant effect on P excretion rate. 4. Increased fish ingestion rate in the mesocosm experiment increased total algal biomass and the flux of nutrients from the water column to sediments. Effects of variable ingestion were much stronger on periphyton biomass and algal sedimentation rates than on phytoplankton or zooplankton biomass or composition. 5. Fish body nutrient composition was greatly affected by ingestion rate. N content increased and P content decreased with ingestion rate. As a result, the N : P ratio of fish bodies also increased with ingestion rate. The N : P ratio of nutrients excreted by fish also increased with ingestion rate, counter to predictions of stoichiometric theory, which predicts that excreted N : P ratio is negatively correlated to body N : P. However, this finding can be explained by relaxing the assumption of constant nutrient assimilation rates, and our mass balance data suggest that assimilation rates vary indeed with ingestion rate. 6. Our study provides experimental evidence that translocation of benthic‐derived nutrients by fish can affect the flux of nutrients among habitats, while also suggesting that stoichiometry models need to better incorporate how variable ingestion rates affect nutrient assimilation and excretion rates.  相似文献   

4.
1. We developed empirical models for predicting the release of nutrients [nitrogen (N) and phosphorus (P)] by aquatic metazoans (zooplankton, mussels, benthic macroinvertebrates and fish). 2. The number of species represented in each model ranged from 9 to 74 (n = 40 – 1122), organism dry mass from 1 × 10?5 to 8 × 104 mg and water temperature from ?1.8 to 32 °C for all models. Organisms were from marine and freshwater (both lotic and lentic) environments. 3. Rates and ratios of nutrient excretion were modelled and intra‐ and intertaxon differences in excretion were examined. Rates of N and P excretion were not significantly different between marine and freshwater species within the same taxon (e.g. zooplankton). However, rates of excretion (as a function of organism dry mass and water temperature) were significantly different among different orders of zooplankton, mussels and fish. However, excretion of N was similar among different orders of benthic macroinvertebrates. 4. Detritivorous fish excreted both N and P at rates greater than all other taxa; whereas mussels excreted N and P generally at rates less than other taxa. There were no significant differences in the rate of N and P excretion between zooplankton and fish (i.e. the allometry of N and P excretion was similar between zooplankton and fish). 5. Molar N : P ratios of nutrients excreted increased with increasing organism dry mass for each group of metazoans, except for zooplankton and detritivorous fish (where N : P ratios declined with increasing organism dry mass). Molar N : P ratios in the excretions of aquatic metazoans were generally below the Redfield ratio of 16:1. 6. We examined the influence of variable abundance of zooplankton, benthic macroinvertebrates and fish on assemblage excretion rates. Rates of N and P excretion were calculated by applying our models to metazoan biomass and abundance data over seven consecutive years in two oligotrophic lakes. Rates of N and P excretion (g ha?1 day?1) increased linearly with increasing assemblage biomass (kg ha?1). However, rates of N and P excretion were significantly and negatively correlated with the relative abundance of fish and positively correlated with the relative abundance of zooplankton.  相似文献   

5.
6.
7.
We measured the elemental content (%C, N and P) and ratios (C:N, C:P, N:P) of a diverse assemblage of parasitic helminths to ask whether taxonomy or traits were related to stoichiometric variation among species. We sampled 27 macroparasite taxa, spanning four phyla, infecting vertebrate and invertebrate hosts from freshwater ecosystems in New Jersey. Macroparasites varied widely in elemental content, exhibiting 4.7‐fold variation in %N, 4.6‐fold variation in %P, and 11.5‐fold variation in N:P. Across all species, parasite %P scaled negatively and C:P scaled positively with body size. Similar relationships between parasite P content and body size occurred at the phylum level and within individual species. The allometric scaling of P across species supports the growth rate hypothesis, which predicts that smaller taxa require more P to support relatively higher growth rates. Life cycle stage was related to %N and C:N, with non‐reproductive parasite stages lower in %N and higher in C:N than actively reproducing parasites. Parasite phylum, functional feeding group, and trophic level did not explain elemental variation among species. Organismal stoichiometry is linked to ecological function, and wide variation in macroparasite stoichiometry likely generates diverse patterns in host–parasite nutrient dynamics and variable relationships between parasitism and nutrient cycling.  相似文献   

8.
Herbivores can have both direct (consumptive) and indirect (nutrient‐mediated) effects on primary producer biomass and nutrient stoichiometry. Ecological stoichiometry theory predicts that herbivores of contrasting body stoichiometry will differentially remineralize nutrients, resulting in feedbacks on producer stoichiometry. We experimentally separated direct and indirect effects of aquatic vertebrate grazers on periphyton by manipulating grazer abundance and identity in mesocosms, and using grazer exclusion cages to expose periphyton to recycled nutrients in the absence of direct grazing. In experiment 1, we used a catfish with high body phosphorus (low body N:P), Ancistrus triradiatus, to assess consumptive versus nutrient‐mediated effects of grazer density on periphyton. In experiment 2, we compared the nutrient‐mediated effects of grazing by Ancistrus triradiatus and Rana palmipes, a tadpole with low body phosphorus and high body N:P. In experiment 1, we found that increasing catfish density led to lower biomass and particulate nutrients in periphyton through direct consumptive effects, but that nutrient‐mediated indirect effects enhanced periphyton biomass when grazers were experimentally separated from direct contact with periphyton. As predicted by stoichiometry theory, nutrient recycling by this P‐rich grazer tended to increase algal C:P and N:P (although effects were not statistically significant), while their consumptive effects reduced algal C:P and N:P. In experiment 2, grazer identity had strong effects on dissolved water nutrient concentrations, N recycling (measured with a 15N tracer), and periphyton stoichiometry. In accordance with stoichiometry theory, catfish increased N concentrations and recycling rates leading to higher periphyton N:P, while tadpoles had greater effects on P availability leading to lower periphyton N:P. Our experiments elucidate the importance of both the density and identity of grazers in controlling periphyton biomass and stoichiometry through consumptive and nutrient‐mediated effects, and support the power of ecological stoichiometry theory to predict feedbacks on producer stroichiometry arising from consumer stoichiometry through nutrient recycling.  相似文献   

9.
The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ~3.2%(±0.6), average %N~10.7%(±0.9), and average %C~41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N:P and benthic organic matter C:N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N:P, and C:P, and life history phenotype was significantly correlated with %C, %P, C:P and C:N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory.  相似文献   

10.
1. Nitrogen (N) and phosphorus (P) fluxes via excretion by benthic invertebrates were quantified in a eutrophic reservoir (Acton Lake, Ohio, U.S.A.). We quantified variation in nutrient fluxes seasonally (June until November 1997), spatially (three sites) and among taxa (chironomids, tubificid oligochaetes and Chaoborus). 2. The three taxa differed in spatial distribution and contribution to nutrient fluxes. Tubificids were the most abundant taxon at two oxic sites (1.5 and 4 m depth), and were exceedingly rare at an anoxic, hypolimnetic site (8 m). Chironomids were abundant only at the shallowest oxic site. Chaoborus was the only abundant taxon at the anoxic site. Total benthic invertebrate biomass was greatest at the shallowest site and lowest at the anoxic, hypolimnetic site. 3. Mass‐specific excretion rate [μmol NH4–N or soluble reactive P (SRP) excreted mg dry mass–1 h–1] varied among experiments and was influenced by temperature. Differences among taxa were not significant. Thus, nutrient flux through benthic invertebrates was affected more by total invertebrate biomass and temperature than by species composition. 4. Fluxes of N and P via benthic invertebrate excretion (μmol NH4–N or SRP m–2 day–1) were greatest at the oxic sites, where fluxes were dominated by the excretion of tubificids and chironomids. The N and P fluxes at the anoxic site were much lower, and were dominated by excretion by Chaoborus. The ratio of N and P excreted by the benthic invertebrate assemblage varied seasonally and was lowest at the anoxic site. 5. Comparison with other measured inputs shows that excretion by benthic invertebrates could be an important source of nutrients, especially of P. However, the relative importance of nutrient excretion by the benthos varies greatly spatially and temporally.  相似文献   

11.
Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation.  相似文献   

12.
Ontogeny, diet shifts, and nutrient stoichiometry in fish   总被引:1,自引:0,他引:1  
Alberto Pilati  Michael J. Vanni 《Oikos》2007,116(10):1663-1674
Most stoichiometric models do not consider the importance of ontogenetic changes in body nutrient composition and excretion rates. We quantified ontogenetic variation in stoichiometry and diet in gizzard shad, Dorosoma cepedianum , an omnivorous fish with a pronounced ontogenetic diet shift; and zebrafish, Danio rerio, grown in the lab with a constant diet. In both species, body stoichiometry varied considerably along the life cycle. Larval gizzard shad and zebrafish had higher molar C:P and N:P ratios than larger fish. Variation in body nutrient ratios was driven mainly by body P, which increased with size. Gizzard shad body calcium content was highly correlated with P content, indicating that ontogenetic P variation is associated with bone formation. Similar trends in body stoichiometry of zebrafish, grown under constant diet in the laboratory, suggest that ontogeny (e.g. bone formation) and not diet shift is the main factor affecting fish body stoichiometry in larval and juvenile stages. The N:P ratio of nutrient excretion also varied ontogenetically in gizzard shad, but the decline from larvae to juveniles appears to be largely associated with variation in the N:P of alternative food resources (zooplankton vs detritus) rather than by fish body N:P. Furthermore, the N:P ratio of larval gizzard shad excretion appears to be driven more by the N:P ratio at which individuals allocate nutrients to growth, more so than static body N:P, further illustrating the need to consider ontogenetic variation. Our results thus show that fish exhibit considerable ontogenetic variation in body stoichiometry, driven by an inherent increase in the relative allocation of P to bones, whereas ontogenetic variation in excretion N:P ratio of gizzard shad is driven more by variation in food N:P than by body N:P.  相似文献   

13.
Hideki Kagata  Takayuki Ohgushi 《Oikos》2012,121(11):1869-1877
The importance of consumers in regulating ecosystem processes has been increasingly recognized. Although insect herbivores have significant impacts on nutrient cycling through excretion in terrestrial systems, few studies have explored how insect species differ in this ecosystem process. Using 130 lepidopteran species, we tested two hypotheses based on ecological stoichiometry and metabolic scaling, respectively, both of which provide a mechanistic framework for consumer‐driven nutrient recycling. Our results highlighted that host plant C:N ratio is the most important determinant of interspecific variation in frass C:N ratio. Insect body mass also partially contributed to the variation in frass C:N ratio. These findings indicate that insect herbivores would play an important role in nutrient recycling with the characteristics of ecological stoichiometry in terrestrial systems.  相似文献   

14.
Seabirds deposit large amounts of nutrient rich guano on their nesting islands. The increased nutrient availability strongly affects plants and consumers. Consumer response differs among taxonomic groups, but mechanisms causing these differences are poorly understood. Ecological stoichiometry might provide tools to understand these mechanisms. ES suggests that nutrient rich taxa are more likely to be nutrient limited than nutrient poorer taxa and are more favored under nutrient enrichment. Here, we quantified differences in the elemental composition of soil, plants, and consumers between islands with and without nesting cormorant colonies and tested predictions made based on ES by relating the elemental composition and the eventual mismatch between consumer and resource stoichiometry to observed density differences among the island categories. We found that nesting cormorants radically changed the soil nutrient content and thereby indirectly plant nutrient content and resource quality to herbivores. In contrast, consumers showed only small differences in their elemental composition among the island categories. While we cannot evaluate the cause of the apparent homeostasis of invertebrates without additional data, we can conclude that from the perspective of the next trophic level, there is no difference in diet quality (in terms of N and P content) between island categories. Thus, bottom-up effects seemed mainly be mediated via changes in resource quantity not quality. Despite a large potential trophic mismatch we were unable to observe any relation between the invertebrate stoichiometry and their density response to nesting cormorant colonies. We conclude that in our system stoichiometry is not a useful predictor of arthropod responses to variation in resource nutrient content. Furthermore, we found no strong evidence that resource quality was a prime determinant of invertebrate densities. Other factors like resource quantity, habitat structure and species interactions might be more important or masked stoichiometric effects.  相似文献   

15.
Grazer species effects on epilithon nutrient composition   总被引:3,自引:0,他引:3  
1. Field and laboratory experiments were conducted to investigate the excretion stoichiometry of nitrogen (N) and phosphorus (P) of two benthic macroinvertebrate grazers, the crayfish Orconectes propinquus and the snail Elimia livescens, that differ in body stoichiometry (mean body molar N : P 18 and 28, respectively). Crayfish excretion had a significantly higher ammonium : soluble reactive phosphorus (SRP) ratio in the laboratory and in three natural streams than did snails, as predicted by ecological stoichiometry theory. 2. In greenhouse recirculating artificial streams, treatments consisting of crayfish, snails, or no grazers were used to examine responses in dissolved nutrient concentrations and epilithon nutrient composition and limitation. SRP concentrations depended upon the grazer species, with the snail treatment having a higher SRP concentration than other treatments (P < 0.05). Dissolved inorganic N was not affected by grazers, but appeared to be rapidly incorporated in epilithon. 3. Epilithon N content was dependent upon the grazer species present, with the crayfish treatment having a significantly higher N content than other treatments (P = 0.001). No grazer species effects on epilithon P content were found. However, both grazer treatments had significantly lower epilithon P content than the no‐grazer treatment. 4. Traditionally, studies have focused on how grazer‐induced structural changes to epilithon can alter epilithon nutrient dynamics, but this structural mechanism could not solely explain differences in epilithon nutrient contents and ratios in the present study. Our results rather suggest that benthic grazers can alter epilithon nutrient composition and limitation via nutrient excretion. Consequently, macroinvertebrate grazers may serve as ‘nutrient pumps’ that partly regulate the availability of nutrients to algae in stream ecosystems.  相似文献   

16.
Resource nutrient content and identity are common bottom–up controls on organismal growth and nutritional regulation. One framework to study these factors, ecological stoichiometry theory, predicts that elevated resource nitrogen (N) and phosphorus (P) contents enhance organism growth by alleviating constraints on N and P acquisition. However, the regulatory mechanisms underlying this response – including whether responses depend on resource identity – remain poorly understood. In this study, we tested roles of detrital N and P contents and identity (leaf species) in constraining growth of aquatic invertebrate detritivores. We synthesized results from seven detritivore species fed wide nutrient gradients of oak and maple detritus in the laboratory. Across detritivore taxa, we used a meta‐analytic approach quantifying effects of detrital leaf species and N and P contents on growth, consumption, and N‐ and P‐specific assimilation and growth efficiencies. Detritivore growth rates increased on higher‐N and P detritus and on oak compared to maple detritus. Notably, the mechanisms of improved growth differed between the responses to detrital nutrients versus leaf species, with the former driven by greater consumption rates despite lower assimilation efficiencies on higher‐nutrient detritus, and the latter driven by improved N and P assimilation and N growth efficiencies on oak detritus. These findings suggest animal nutrient acquisition changes flexibly in response to resource changes, altering the fate of detrital N and P throughout regulation. We affirm resource identity and nutrients as important bottom–up controls, but suggest these factors act through separate pathways to affect organism growth and thereby change detrital ecosystems under anthropogenic forest compositional change and nutrient enrichment.  相似文献   

17.
1. We measured N and P excretion rates of 470 individuals belonging to 18 freshwater fish species widespread in Western Europe. We assessed the effect of body mass on excretion rates at both the intra‐ and interspecific levels. 2. The high variability in per capita N and P excretion rates was mainly determined by differences in body mass. The scaling coefficients of allometric relationships for both N and P excretion rates were significantly lower than 1 (mean ± SE, 0.95 ± 0.04 and 0.81 ± 0.05, respectively). 3. The slope of the allometric relationship between fish mass and nutrient excretion rate was significantly different among species. We did not detect any influence of phylogenetic conservatism on fish mass and on excretion rates. Further investigations are needed to understand the biological determinants of these differences. 4. This high intra‐ and interspecific variability in per capita excretion rates, coupled with differences in fish body mass, produce marked differences in biomass‐standardised excretion rates. These results thus indicate the necessity for further experimental and in situ investigations on the consequences of nutrient recycling by fish in freshwater ecosystems.  相似文献   

18.
Ecological stoichiometry has emerged as a tool for exploring nutrient demand and evolutionary responses to nutrient limitation. Previous studies of insects have found predictable variability in stoichiometry, both in relation to body size and trophic mode, at ordinal levels or higher. Our study further examines the evolutionary and ecological lability in these traits by comparing the effects of body size, trophic mode (larval and adult) and larval habitat on the stoichiometry of insects within one order (Diptera). The study also expands on previous work by analyzing trophic mode both at coarse (detritivore, herbivore, predator) and fine (high- vs low- nutrient quality resources within trophic categories) scales and by comparing nutrient stoichiometry in two geographical regions, Sweden and Arizona. As predicted, adults feeding on nectar or pollen had the lowest body N content in the dataset. Additionally, for Diptera with predatory larvae, species low N diets had lower body N content than those with high N diets. However, body N content was not consistently lower for all species with low N resources, as species feeding on plant material were indistinguishable in stoichiometry from predators with high N diets. We suggest that these results emerge because larval resource exploitation is poorly understood in herbivorous Diptera species. Body P content for Swedish Diptera decreased with body size for all trophic modes, and the only difference among trophic modes was that blood feeders had higher P content than other groups. The regional comparison further showed that the allometry of body P content is a labile trait that may vary at regional scales, as there was no allometric scaling of body P content in the Arizona data set, in contrast to the Swedish data set. These results are not easily explained by existing theoretical frameworks, but instead point to a general context-dependence of P stoichiometry, which should now be a focus for future work.  相似文献   

19.
Previous syntheses have identified the key roles that phylogeny, body size, and trophic level play in determining arthropod stoichiometry. To date, however, detritivores have been largely omitted from such syntheses, despite their importance in nutrient cycling, biodiversity, and food web interactions. Here, we report on a compiled database of the allometry and nutritional stoichiometry (N and P) of detritivorous arthropods. Overall, both N and P content for detritivores varied among major phylogenetic lineages. Detritivore N content was similar to the N content of herbivores, but below that of predators. By contrast, detritivore P content was independent of trophic level. Contrary to previous reports, neither nutrient varied with body size. This analysis places detritivores in the context of related herbivores and predators, and as such, sets the stage for future investigations into the causes and consequences of elemental (mis)matches between detritivores and their detrital resources. Holly M. Martinson and Katie Schneider are co-first author.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号