首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a lethal toxic fragment of staphylococcal alpha-toxin on the activity of adenosine 3',5'-monophosphate(cyclic AMP)-dependent protein kinase was examined. 1. The lethal toxic fragment produced a dose-dependent decrease in both the binding of cyclic AMP to the regulatory subunit and phosphorylation activity of cyclic AMP-dependent protein kinase obtained from rabbit skeletal muscles up to a plateau at a 50% inhibitory effect. The decrease in the activity of protein kinase observed with low doses of the lethal toxic fragment (0.1 microM) resulted from a competitive inhibition, probably by its interaction with the cyclic AMP-binding site in the regulatory subunit molecule. 2. The effects of a lethal toxic fragment and epinephrine on the cyclic AMP level and protein kinase activity were investigated in the perfused rabbit heart slices. The lethal toxic fragment attenuated the stimulation of cyclic AMP-dependent protein kinase activity ratio by epinephrine. 3. It is suggested that the specific action of a lethal toxic fragment on the cellular membrane enzymes may be attributable to the inhibition of the cyclic AMP-dependent protein kinase activity.  相似文献   

2.
The Saccharomyces cerevisiae SRK1 gene, when expressed on a low-copy shuttle vector, partially suppresses the phenotype associated with elevated levels of cyclic AMP-dependent protein kinase activity and suppresses the temperature-sensitive cell cycle arrest of the ins1 mutant. SRK1 is located on chromosome IV, 3 centimorgans from gcn2. A mutant carrying a deletion mutation in srk1 is viable. SRK1 encodes a 140-kDa protein with homology to the dis3+ protein from Schizosaccharomyces pombe. The ability of SRK1 to alleviate partially the defects caused by high levels of cyclic AMP-dependent protein kinase and the similarity of its encoded protein to dis3+ suggest that SRK1 may have a role in protein phosphatase function.  相似文献   

3.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

4.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

5.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of th cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak 0) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak 0 is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak 0 was noted. Changes in peak I and peak III correlated with the modification of glycogen synthase and glycogen phosphorylase activities. No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

6.
A phosphoprotein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) from calf thymus nuclei was purified by DEAE-cellulose chromatography, hydroxyapatite, and Sepharose 6B gel filtration. The enzyme is a cyclic AMP-independent protein kinase by the following criteria: (a) the protein kinase did not bind cyclic AMP; (b) no inhibition of activity was obtained with the heat-stable protein kinase inhibitor from rabbit skeletal muscle; (c) the regulatory subunit of cyclic AMP-dependent protein kinase had no effect on activity; and (d) no inhibition was obtained with antibody to cyclic AMP-dependent protein kinase. The nuclear cyclic AMP-independent protein kinase readily phosphorylated protamine on serine and to a lesser extent on threonine. Homologous nucleoplasmic RNA polymerase (EC 2.7.7.6) is a better substrate than arginine-rich histone, phosvitin or casein. Physical characteristics of the enzyme are described.  相似文献   

7.
Cyclic nucleotides and cyclic nucleotide-dependent protein kinases have been implicated in the regulation of cell motility and division, processes that depend on the cell cytoskeleton. To determine whether cyclic nucleotides or their kinases are physically associated with the cytoskeleton during cell division, fluorescently labeled antibodies directed against cyclic AMP, cyclic GMP, and the cyclic nucleotide- dpendent protein kinases were used to localize these molecules in mitotic PtK1 cells. Both the cyclic GMP-dependent protein kinase and the type II regulatory subunit of the cyclic AMP-dependent protein kinase were localized on the mitotic spindle. Throughout mitosis, their distribution closely resembled that of tubulin. Antibodies to cyclic AMP, cyclic GMP, and the type I regulatory and catalytic subunits of the cyclic AMP-dependent protein kinase did not label the mitotic apparatus. The association between specific components of the cyclic neucleotide system and the mitotic spindle suggests that cyclic nucleotide-dependent phosphorylation of spindle proteins, such as those of microtubules, may play a fundamental role in the regulation of spindle assembly and chromosome motion.  相似文献   

8.
Observation and quantification of the catalytic subunit C of cyclic AMP-dependent protein kinases by immuno-gold electron microscopy suggested a high concentration of cyclic AMP-dependent protein kinases in mitochondria from liver, kidney, heart and skeletal muscle, pancreas, parotid gland and brain cells. The position of gold particles pointed to a localization in the inner membrane/matrix space. A similar distribution was obtained by immunolocalization of the cyclic AMP-dependent protein kinase regulatory subunits RI and RII in liver, pancreas and heart cells. The results indicated the presence of both the type I and the type II cyclic AMP-dependent protein kinases in mitochondria of hepatocytes, and the preferential occurrence of the type I protein kinase in mitochondria from exocrine pancreas and heart muscle. The immunocytochemical results were confirmed by immunochemical determination of cyclic AMP-dependent protein kinase subunits in fractionated tissues. Determinations by e.l.i.s.a. of the C-subunit in parotid gland cell fractions indicated about a 4-fold higher concentration of C-subunit in the mitochondria than in a crude 1200 g supernatant. Immunoblot analysis of subfractions from liver mitochondria supported the localization in situ of cyclic AMP-dependent protein kinases in the inner membrane/matrix space and suggested that the type I enzyme is anchored by its regulatory subunit to the inner membrane. In accordance with the immunoblot data, the specific activity of cyclic AMP-dependent protein kinase measured in the matrix fraction was about twice that measured in whole mitochondria. These findings indicate the importance of cyclic AMP-dependent protein kinases in the regulation of mitochondrial functions.  相似文献   

9.
Cyclic AMP arrests T lymphocytes in the G1 phase of the cell cycle, and prolonged exposure results in cytolysis. Both of these effects require cyclic AMP-dependent protein kinase. We recently observed that some S49 mouse T lymphoma cell lines selected for hydroxyurea resistance were not arrested in G1 by cyclic AMP. Further analysis revealed that these cell lines were cyclic AMP-dependent protein kinase deficient, and conversely, other cyclic AMP-dependent protein kinase deficient cell lines not selected for hydroxyurea resistance were two- to threefold more hydroxyurea resistant. However, hydroxyurea is a specific inhibitor of ribonucleotide reductase and does not inhibit this kinase. We subsequently showed that cyclic AMP-dependent protein kinase will phosphorylate the M2 but not the M1 subunit of ribonucleotide reductase in vitro, and this phosphorylation will diminish CDP reductase activity. In vivo phosphorylation of M2 occurred under conditions similar to those that generate cell cycle arrest. We conclude that the M2 subunit of ribonucleotide reductase can be a target of cyclic AMP-dependent protein kinase. The phosphorylated enzyme has diminished activity, and this may play a role in cyclic AMP-induced lymphocyte cell cycle arrest.  相似文献   

10.
Mutations in the SRA1 or SRA3 gene eliminate the requirement for either RAS gene (RAS1 or RAS2) in Saccharomyces cerevisiae. We cloned SRA1 and SRA3 and determined their DNA sequences. SRA1 encodes the regulatory subunit of the cyclic AMP (cAMP)-dependent protein kinase and therefore is identical to REG1 and BCY1. This gene is not essential, but its deletion confers many traits: reduction of glycogen accumulation, temperature sensitivity, reduced growth rate on maltose and sucrose, inability to grow on galactose and nonfermentable carbon sources, and nitrogen starvation intolerance. SRA3 is homologous to protein kinases that phosphorylate serine and threonine and likely encodes the catalytic subunit of the cAMP-dependent protein kinase. The wild-type SRA3 gene either triplicated in the chromosome or on episomal, low-copy plasmids behaves like spontaneous dominant SRA3 mutations by suppressing ras2-530 (RAS2::LEU2 disruption), cdc25, and cdc35 mutations. These findings indicate that the yeast RAS genes are dispensable if there is constitutive cAMP-dependent protein kinase activity.  相似文献   

11.
Autolysis of Saccharomyces cerevisiae is the main source of molecules that contribute to the quality of sparkling wines made by the traditional method. In this work the possibility of accelerating this slow process in order to improve the quality of sparkling wines by using genetically engineered wine yeast strains was explored. The effect of partial or total deletion of BCY1 (which encodes a regulatory subunit of cAMP-dependent protein kinase A) in haploid and diploid (heterozygous and homozygous) yeast strains was studied. We proved that heterozygous strains having partial or complete BCY1 deletions have a semidominant phenotype for several of the properties studied, including autolysis under simulated second-fermentation conditions, in contrast to previously published reports describing mutations in BCY1 as recessive. Considering the degree of autolysis, ethanol tolerance, and technical feasibility, we propose that deletion of the 3' end of the open reading frame of a single copy of BCY1 is a way to improve the quality of sparkling wines.  相似文献   

12.
H Olsson  P Belfrage 《FEBS letters》1988,232(1):78-82
Phosphorylation of the basal site with glycogen synthase kinase-4 enhanced the rate of phosphorylation of the regulatory site by cyclic AMP-dependent protein kinase 1.7-fold. In contrast, the phosphorylation state of the regulatory site did not affect the rate of phosphorylation of the basal site with glycogen synthase kinase-4. The rate of dephosphorylation of either the regulatory or the basal phosphorylation site by protein phosphatase-1, 2A or 2C was independent of the phosphorylation state of the other site. These results suggest that the basal phosphorylation site could play an indirect role in the control of the hormone-sensitive lipase activity in the adipocyte by functioning as a recognition site for the cyclic AMP-dependent protein kinase in the phosphorylation of the activity-controlling regulatory phosphorylation site in response to lipolytic hormones.  相似文献   

13.
DEAE-cellulose chromatography of the 20,000g supernatant fraction of homogenates of C-1300 murine neuroblastoma (clone N2a) yields one major and two minor peaks of cyclic AMP-dependent protein kinase activity. Assessment of the endogenous activation state of the enzyme(s) reveals that the enzyme is fully activated by the treatment of whole cells with adenosine (10 μM) in the presence of the phosphodiesterase inhibitor Ro 20 1724 (0.7 mM). This treatment produces a large elevation in the cyclic AMP content of the cells. The treatment of whole cells with adenosine alone (1–100 μM) or Ro 20 1724 alone (0.1–0.7 mM) produces minimal elevations in cyclic AMP but nevertheless causes significant activations of cyclic AMP-dependent protein kinase. The autophosphorylation of whole homogenates of treated and untreated cells was studied using [γ-32P] ATP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Treatments which activate cyclic AMP-dependent protein kinase selectively stimulate the incorporation of 32P into several proteins. This stimulation is most prominent in the 15,000-dalton protein band. The addition of cyclic AMP to phosphorylation reactions containing homogenate of untreated cells stimulates the phosphorylation of the same protein bands. These results indicate that adenosine may have regulatory functions through its effect on the cyclic AMP: cyclic AMP-dependent protein kinase system.  相似文献   

14.
S Okuno  Y Kanayama  H Fujisawa 《FEBS letters》1989,253(1-2):52-54
To determine the regulatory mechanism for human tyrosine hydroxylase, we examined modulations of the activity of the enzyme from human pheochromocytoma by cyclic AMP-dependent protein kinase, calmodulin-dependent protein kinase II and polyanion. The most remarkable activation was observed when the enzyme was assayed at physiological pH (pH 7) after being subjected to phosphorylation by cyclic AMP-dependent protein kinase. Calmodulin-dependent protein kinase II and polyanion also modulated the enzyme activity. The results suggest that tyrosine hydroxylase may be regulated similarly in both human and rat.  相似文献   

15.
Endogenous proteins which could serve as substrates for cyclic AMP-dependent protein kinase in vitro were measured in cytosolic fractions at four stages of development. A peak of cyclic AMP-dependent phosphorylation occurred at the slug stage, coincident with the appearance of cyclic AMP-dependent protein kinase. After partial purification of the slug-stage extracts by DE-52 cellulose and Sephacryl S-300 chromatography, cyclic AMP dependency of six proteins was observed. The apparent subunit molecular weights of the proteins were greater than 200,000, 110,000, 107,000, 91,000, 75,000 and 69,000. Upon further purification of the cyclic AMP-dependent protein kinase by chromatofocusing, the endogenous substrates were separated from the enzyme. In addition, the enzyme separated into catalytic and regulatory subunits. If the purified catalytic subunit was added to heated S300 fractions, proteins with apparent molecular weights of 91,000 and 107,000 were specificity phosphorylated. The results show the stage-dependent appearance of a cyclic AMP-dependent protein kinase and point out several in vitro substrates for the enzyme.  相似文献   

16.
We examined the patterns of cyclic AMP-dependent protein phosphorylation in membranes prepared from rat cortical synaptosomes following gel electrophoresis and autoradiography. We determined the optimum pH (6.2), time (20 s), Mg2+ concentration (10 mM) and cyclic AMP concentration (5 microM) for the reaction. We also found that the detergents Triton X-100 and gramicidin S enhanced cyclic AMP-dependent protein phosphorylation. Inhibitors of the Na+, K+ ATPase (ouabain, NaF, vanadate) enhanced protein phosphorylation. This effect occurred in the presence but not in the absence of detergent. The addition of purified bovine brain cyclic AMP-dependent protein kinase catalytic subunit enhanced membrane protein phosphorylation. The addition of homogeneous neural (bovine brain) and non-neural (bovine skeletal muscle) cyclic AMP-dependent protein kinase type II regulatory subunit partially inhibited protein phosphorylation. Both neural and non-neural regulatory subunits behaved similarly. In addition to cyclic AMP-dependent phosphorylation, the alpha-subunit of pyruvate dehydrogenase (Mr = 41,000) is phosphorylated in a cyclic AMP-independent fashion. We also examined the phosphorylation pattern of membranes prepared from rat heart and found that the number of acceptor substrates was much less than that from the nervous system.  相似文献   

17.
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was phosphorylated by cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Treatment of the 32P-labeled enzyme with thermolysin removed all of the radioactivity from the enzyme core and produced a single labeled peptide. The phosphopeptide was purified by ion exchange chromatography, gel filtration, and reverse phase high pressure liquid chromatography. The sequence of the 12-amino acid peptide was found to be Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser(P)-Ser-Ile-Pro-Gln. Correlation of the extent of phosphorylation with activity showed that a 50% decrease in the ratio of kinase activity to bisphosphate activity occurred when only 0.25 mol of phosphate was incorporated per mol of enzyme subunit, and maximal changes occurred with 0.7 mol incorporated. The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of the native bifunctional enzyme was compared with that of other rat liver protein substrates. The Km for 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (10 microM) was less than that for rat liver pyruvate kinase (39 microM), fructose-1,6-bisphosphatase (222 microM), and 6- phosphofructose -1-kinase (230 microM). Comparison of the initial rate of phosphorylation of a number of protein substrates of the cyclic AMP-dependent protein kinase revealed that only skeletal muscle phosphorylase kinase was phosphorylated more rapidly than the bifunctional enzyme. Skeletal muscle glycogen synthase, heart regulatory subunit of cyclic AMP-dependent protein kinase, and liver pyruvate kinase were phosphorylated at rates nearly equal to that of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, while phosphorylation of fructose-1,6-bisphosphatase and 6-phosphofructo-1-kinase was barely detectable. Phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was not catalyzed by any other protein kinase tested. These results are consistent with a primary role of the cyclic AMP-dependent protein kinase in regulation of the enzyme in intact liver.  相似文献   

18.
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into 'type I or 'type II' depending on whether they were derived from 'type I' or 'type II' protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.  相似文献   

19.
Chinese hamster ovary cells exhibit several characteristic morphological and physiological responses upon treatment with agents which increase the intracellular level of adenosine 3':5'-phosphate (cyclic AMP). To better understand the mechanism of these cyclic AMP-mediated responses, we separated two cyclic AMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) (protein kinase I and protein kinase II) from the cytosol of Chinese hamster ovary cells by DEAE-cellulose chromatography and studied their properties. Protein kinase I is eluted at a lower salt concentration than protein kinase II and is stimulable to 10 times its basal catalytic activity, while protein kinase II is stimulable only 2-fold. Both kinases are completely dissociated by cyclic AMP and inhibited by specific cyclic AMP-dependent protein kinase inhibitor. They have similar Km values for magnesium (approximately 1 mM), cyclic AMP (approximately 60 nM), and ATP (approximately 0.1 mM), and the dissociation constant (Kdis) for cyclic AMP (approximately 13 nM) is the same for both enzymes. However, they appear to have different substrate preferences and cyclic AMP-binding properties in that cyclic AMP bound to protein kinase II exchanges readily with free cyclic AMP, while that bound to protein kinase I is not exchangeable. The native enzymes have different sedimentation coefficients (6.4 S for protein kinase I and 4.8 S for protein kinase II), whereas those of the activated enzymes are the same (2.9--3.0 S). It appears that the two cyclic AMP-dependent protein kinases which differ from each other in their regulatory subunits may play different roles in the mediation of cyclic AMP action in Chinese hamster ovary cells.  相似文献   

20.
Confluent T51B rat liver epithelial cells promptly began accumulating cyclic AMP-binding sites on their surfaces when they were stimulated from quiescence by serum growth factors in medium containing 1.8 mM Ca2+, but they began losing the accumulated binding sites shortly before initiating DNA replication. When the medium contained only 0.02 mM Ca2+, the cells still accumulated surface cyclic AMP-binding sites, but they did not initiate DNA replication and tended to continue accumulating the binding sites. The cyclic AMP-binding sites were eliminated completely by treating intact cells for 5 minutes with 0.005% trypsin (which did not damage the cells), and cyclic AMP caused them to be released from intact, undamaged cells into the medium. The binding sites also comigrated electrophoretically with purified regulatory subunits of type I cyclic AMP-dependent protein kinase, and to a lesser extent the regulatory subunit of type II cyclic AMP-dependent protein kinase. Therefore, it is likely that a transient accumulation of cyclic AMP-dependent protein kinases on the outer surface of the plasma membrane is part of the T51B rat liver cell's prereplicate program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号