首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The differences in salt tolerance between Hordeum maritimum and H. murinum were studied. Seeds were collected at horn maturity from wild populations growing respectively near the Orbetello Lagoon and S. Piero a Grado (Tuscany, Italy) and were used in germination and growth tests at increasing salinity (NaCl) levels. H. maritimum was confirmed to be a true halophyte as compared to H. murinum, which exhibited germination behavior typical of many wild glycophytes. The higher salt sensitivity of H. murinum compared to H. maritimum was also shown by its shoot length values, which decreased only in H. murinum, albeit in 100 mM NaCl treatment. The higher degree of salt tolerance of H. maritimum is further demonstrated by the Na : K ratio. H. maritimum can accumulate a greater amount of sodium than potassium in both roots and shoots, even in the absence of salt treatment. However, in NaCl solutions H. maritimum showed a higher Na : K ratio for shoots — an index of better uptake and translocation of sodium to leaves — as has been demonstrated for many halophyte includers. These results thus help to enhance knowledge on wild relatives of barley, whose potential contribution to genetic improvement in salinity tolerance has previously not been thoroughly explored.  相似文献   

2.
Hordeum maritimum (Poacea) is a facultative halophyte potentially useful for forage production in saline zones. Here, we assessed whether moderate NaCl-salinity can modify the plant response to phosphorus (P) shortage. Plants were cultivated for 55 days under low or sufficient P supply (5 or 60 μmol plant−1 week−1 KH2PO4, respectively), with or without 100 mM NaCl. When individually applied, salinity and P deficiency significantly restricted whole-plant growth, with a more marked effect of the latter stress. Plants subjected to P deficiency showed a significant increase in root growth (as length and dry weight) and root/shoot DW ratio. Enhanced root growth and elongation presumably correspond to the well-known root adaptive response to mineral deficiency. However, leaf relative water content, leaf P concentration, and leaf gas exchange parameters were significantly restricted. The interactive effects of salinity and P deficiency were not added one to another neither on whole plant biomass nor on plant nutrient uptake. Indeed, 100 mM NaCl-addition to P-deficient plants significantly restored the plant growth and improved CO2 assimilation rate, root growth, K+/Na+ ratio and leaf proline and soluble sugar concentrations. It also significantly enhanced leaf total antioxidant capacity and leaf anthocyanin concentration. This was associated with significantly lower leaf osmotic potential, leaf Na+ and malondialdehyde (MDA) concentration. Taken together, these results suggest that mild salinity may mitigate the adverse effects of phosphorus deficiency on H. maritimum by notably improving the plant photosynthetic activity, the osmotic adjustment capacity, the selective absorption of K+ over Na+ and antioxidant defence.  相似文献   

3.
Ion homeostasis is considered to be one of the most important mechanisms underlying salt stress tolerance. We used the Steptoe × Morex barley doubled haploid population to screen for genetic variation in response to salinity stress at an early development stage in a hydroponics system, focusing on ion homeostasis. Salinity induced a strong adverse effect on growth of the parents and their derived population, with Steptoe as the more tolerant parent. Steptoe maintained higher concentrations of K+, Na+ and Cl? in the roots and a similar shoot/root ion ratio (<1) under stress conditions compared to control conditions. In contrast, Morex had higher concentrations of these ions in the shoots under stress and a doubled shoot/root ion ratio relative to control conditions, indicating that salt exclusion might contribute to the higher tolerance of Steptoe. Correlation and path analysis demonstrated that shoot Cl? contents most strongly affected salt tolerance and suggest that both Na+ and Cl? contents are important for salinity stress tolerance in barley. We identified 11 chromosomal regions involved in the control of the variation observed for salt tolerance and various salt stress response traits, including Na+, Cl? and K+ contents in shoots. Two specific regions on chromosomes 2H and 3H were found controlling ion contents and salt tolerance, pointing to genes involved in ion homeostasis that contribute to salt tolerance.  相似文献   

4.
The interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity were investigated in barley (Hordeum vulgare L. cv. Manel). Seedlings were grown hydroponically under low or sufficient phosphorus (P) supply (5 or 180 μmol KH(2) PO(4) plant(-1) week(-1) , respectively), with or without 100 mm NaCl. Phosphorus deficiency or salinity significantly decreased whole plant growth, leaf water content, leaf osmotic potential and gas exchange parameters, with a more marked impact of P stress. The effect of both stresses was not additive since the response of plants to combined salinity and P deficiency was similar to that of plants grown under P deficiency alone. In addition, salt-treated plants exposed to P deficiency showed higher salt tolerance compared to plants grown with sufficient P supply. This was related to plant ability to significantly increase root:shoot DW ratio, root length, K(+)/Na(+) ratio, leaf proline and soluble sugar concentrations and total non-enzymatic antioxidant capacity, together with restricting Na(+) accumulation in the upper leaves. As a whole, our results indicate that under concomitant exposure to both salt and P deficiency, the impact of the latter constraint is pre-dominant.  相似文献   

5.
Abstract

The effects of temperature and salinity (NaCl) on germination of Hordeum maritimum With, (halophyte) and H. murinum L. (glycophyte) seeds were investigated. Dehulled caryopses were used for monthly germination trials, starting from November (120 days of after‐ripening in darkness at 20±1°C). Trials were continued for one year. Differences in germination response between the two species were observed, confirming that H. Maritimum is better adapted to high salinity levels and to variations in external temperature than H. murinum. H. maritimum showed a germination control mechanism related to after‐ripening time and based on seed dormancy break/resumption. At higher temperature (30°C), thermodormancy was also recorded. No germination strategies were observed in H. murinum that is relatively insensitive to the combined effects of temperature and salinity. Thus, in virtually all treatments, H. murinum exhibited a higher germination rate compared with H. maritimum, as early as 72 h after imbibition, suggesting that dormancy, both in the presence or absence of salt, is totally abolished by early fall or at the latest in winter.  相似文献   

6.
Crithmum maritimum (Apiaceae), a perennial halophyte native in Greece, could be used as an alternative culture at problematic soils. It presents significant economical potentials as its essential oils are in high demand from the medicinal and cosmetic industry. The response of the species on in vitro conditions was studied. MS proved to be the most effective of the basal media tested for in vitro adventitious shoot production, resulting in significantly increased number of new microshoots/explant and higher shoots. 6-Benzyladenine (BA) at 2.5 μM increased shoot proliferation. The combination of α-Naphthaleneacetic acid (NAA) (1–2.5 μM) with BA (2.5 μM) had a positive influence at simultaneous proliferation and rooting resulting in high rooting percentage (82.5–95%) and increased number of roots. Rooting percentage reached 100% and number of roots increased significantly when 0.5 μM and 1 μM IBA was combined with ½MS and full strength MS. The in vitro response to salinity stress (0–300 mM NaCl) was also tested. Shoot proliferation was gradually reduced at higher concentrations of NaCl but shoot height was enhanced. Acclimatization procedure was successful.  相似文献   

7.

Background and aims

Embothrium coccineum (R. et J. Forst.) is a Proteaceae species from the southern part of South America. South-central Chilean soils are younger and contain more phosphorus (P) than soils in Australia and South Africa, where Proteaceae are common. Phosphorus deficiency is the main factor promoting cluster-root formation in Proteaceae. It is not known, however, whether this also applies to E. coccineum, which grows on soils with higher P content.

Methods

Four-month-old seedlings were grown for 4 weeks in hydroponic cultures with 1 μM P or 50 μM P. The number of cluster roots, relative height increment, biomass distribution, cluster root/total root biomass ratio, foliar P concentration, root acid phosphatase activity and root carboxylate-exudation rates were determined.

Results

Seedlings growing at 50 μM P showed a 10?, 1.3? and 3.3-fold greater increase in relative height, total dry mass and foliar P concentration, respectively, compared with those grown at1 μM P. However, seedlings grown at 1 μM P showed a 5?, 16?, 1.7? and 1.3-fold greater number of cluster roots, cluster root/total root biomass ratio, phosphatase activity and total carboxylate exudation, respectively, as compared with those grown at 50 μM P.

Conclusions

A low P supply promotes the initiation, growth and metabolic activity of cluster roots which is in accordance with reports on Proteaceae species occurring in ancient and highly weathered soils.  相似文献   

8.
Physiological and biochemical responses of Hordeum maritimum and H. vulgare to salt stress were studied over a 60‐h period. Growth at increasing salinity levels (0, 100, 200 and 300 mM NaCl) was assessed in hydroponic culture. H. maritimum was shown to be a true halophyte via its typical behaviour at high salinity. Shoot growth of cultivated barley was gradually reduced with increasing salinity, whereas that of wild barley was enhanced at 100 and 200 mm NaCl then slightly reduced at 300 mM NaCl. The higher salt tolerance of H. maritimum as compared to H. vulgare was due to its higher capacity to maintain cell turgor under severe salinity. Furthermore, H. maritimum exhibited fine regulation of Na+ transport from roots to shoots and, unlike H. vulgare, it accumulated less Na+ in shoots than in roots. In addition, H. maritimum can accumulate more Na+ than K+ in both roots and shoots without the appearance of toxicity symptoms, indicating that Na+ was well compartmentalized within cells and substituted K+ in osmotic adjustment. The higher degree of salt tolerance of H. maritimum is further demonstrated by its economic strategy: at moderate salt treatment (100 mm NaCl), it used inorganic solutes (such as Na+) for osmotic adjustment and kept organic solutes and a large part of the K+ for metabolic activities. Indeed, K+ use efficiency in H. maritimum was about twofold that in H. vulgare; the former started to use organic solutes as osmotica only at high salinity (200 and 300 mm NaCl). These results suggest that the differences in salt tolerance between H. maritimum and H. vulgare are partly due to (i) differences in control of Na+ transport from roots to shoots, and (ii) H. maritimum uses Na+ as an osmoticum instead of K+ and organic solutes. These factors are differently reflected in growth.  相似文献   

9.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

10.

Aims

Phosphorus (P) limits crop yield and P-fertilisers are frequently applied to agricultural soils. However, supplies of quality rock phosphate are diminishing. Plants have evolved mechanisms to improve P-acquisition and understanding these could improve the long-term sustainability of agriculture. Here we examined interactions between root hairs and arbuscular mycorrhizal (AM) colonisation in barley (Hordeum vulgare L.).

Methods

Barley mutants exhibiting different root hair phenotypes, wild type barley and narrowleaf plantain (Plantago lanceolata L.) were grown in the glasshouse in P-sufficient and P-deficient treatments and allowed to develop AM colonization from the natural soil community. Plants were harvested after 6 weeks growth and root hair length, AM-fungal colonisation, shoot biomass and P-accumulation measured.

Results

Under P-deficient conditions, root hair length and AM colonisation were negatively related suggesting that resources are allocated to root hairs rather than to AM fungi in response to P-deficiency. There was evidence that barley and narrowleaf plantain employed different strategies to increase P-acquisition under identical conditions, but root hairs were more effective.

Conclusions

This research suggests future barley breeding programmes should focus on maintaining or improving root hair phenotypes and that pursuing enhancements to AM associations under the prevalent agricultural conditions tested here would be ineffectual.  相似文献   

11.
The alkaloid patterns of sea daffodil (Pancratium maritimum L.) shoot culture, cultivated in a temporary immersion cultivation system were investigated. The shoots accumulated maximal amounts of biomass (0.8 g dry biomass/L and Growth Index?=?1.6) at immersion frequency with 15 min flooding and 12 h stand-by periods. At this regime P. maritimum shoots achieved the highest degree of utilization of carbon source. Twenty-two alkaloids, belonging to narciclasine, galanthamine, haemanthamine, lycorine, montanine, tazettine, homolycorine and tyramine types were identified in intracellular and extracellular alkaloid extracts. The immersion frequency affected strongly the capacity of alkaloid biosynthesis in P. maritimum shoots and at the optimum conditions of cultivation, the total intracellular alkaloid content reached up to 3,469 μg/g dry biomass. The main biosynthesized alkaloids were haemanthamine (900.1 μg/g) and lycorine (799.9 μg/g). The obtained results proved that temporary immersion technology, as a cultivation approach, and P. maritimum shoots, as a biological system, are prospective for producing wide range bioactive alkaloids.  相似文献   

12.
A pot experiment was carried out to explore the role of glycinebetaine (GB) as foliar spray foliar on two pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd) under saline and non-saline conditions. Thirty-two-day-old plants were subjected to two levels 0 and 150 mM of NaCl stress. Salt treatment was applied in full strength Hoagland’s nutrient solution. Three levels 0, 5 and 10 mM of GB were applied as foliar treatment on 34-day-old pea plants. After 2 weeks of foliar treatment with GB data for various growth and physiochemical attributes were recorded. Rooting-medium applied salt (150 mM NaCl) stress decreased growth, photosynthesis, chlorophyll, chlorophyll fluorescence and soluble protein contents, while increasing the activities of enzymatic (POD and CAT) and non-enzymatic (ascorbic acid and total phenolics) antioxidant enzymes. Foliar application of GB decreased root and shoot Na+ under saline conditions, while increasing shoot dry matter, root length, root fresh weight, stomatal conductance (g s), contents of seed ascorbic acid, leaf phenolics, and root and shoot Ca2+ contents. Of three GB (0, 5, 10 mM) levels, 10 mM proved to be more effective in mitigating the adverse effects of salinity stress. Overall, variety Pea 09 showed better performance in comparison to those of var. Meteor Fsd under both normal and salinity stress conditions. GB-induced modulation of seed ascorbic acid, leaf phenolics, g s, and root Ca2+ values might have contributed to the increased plant biomass, reduction of oxidative stress, increased osmotic adjustment and better photosynthetic performance of pea plants under salt stress.  相似文献   

13.
The role of mycorrhizal fungi in overcoming nutrient limitation to plant growth by enhancing nutrient acquisition, especially phosphorus (P) and nitrogen (N), is well documented. However, in orchids, the importance of mycorrhizal fungi in nutrient acquisition is not as extensively studied as in other plants. Therefore, an in vitro culture system to study the effects of mycorrhizal association on P and N metabolizing enzymes, viz., acid phosphatase, alkaline phosphatase, nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) in Dendrobium chrysanthum was developed. After 90 days of mycorrhizal treatment, activities of acid phosphatase, alkaline phosphatase, NR, NiR and GS were higher in mycorrhizal plantlets than in control plantlets. The hardened plantlets that were initially treated with mycorrhiza under in vitro conditions also showed higher activities of the enzymes investigated. These mycorrhizal plantlets showed higher survival (96.33 %), shoot length (3.7 cm) and shoot fresh weight (0.359 g) as compared to control after 120 days of hardening. The results presented in this study suggest that mycorrhizal association might have increased the assimilation of P and N in D. chrysanthum plantlets, indicating the importance of mycorrhiza in orchids.  相似文献   

14.
Global climate change will likely result in the reduction of water levels in intermountain wetlands and ponds, and the vegetation communities associated with these wetlands are an important forage source for livestock. Lowered water levels will not only constrict wetland plant communities, it will potentially change aquatic and soil salt concentrations. Such an increase in salinity can reduce plant growth and potentially affect competitive interactions between plants. A greenhouse experiment examined the effects of salinity and competition on the growth of two wet meadow grass species, Poa pratensis (a glycophyte) and Puccinellia nuttalliana (a halophyte). The following hypotheses based on published data were tested: (1) Biomass of both species will decrease with increasing concentration of salt; (2) root:shoot (R:S) ratio of P. pratensis will decrease with increasing salt concentration while R:S ratio of P. pratensis and P. nuttalliana will increase with clipping; (3) competitive importance will decrease for P. pratensis and P. nuttalliana with increasing salt concentration because salt induces a stress response and competitive importance is reduced in stressed environments. A factorial design included 3 plant treatments (P. nuttalliana alone, P. pratentsis alone, P. nuttalliana + P. pratensis) × 4 salinity rates (control; 5, 10, 15 g/L NaCl) × 2 clipping intensities (plants clipped or not clipped) for a total of 24 combinations replicated 6 times over a period of 90 days. We found a reduction in dry biomass as salinity increased, and this effect was greatest for P. pratensis. (1.94 g (SE 0.13) at 0 g/L NaCl to 0.22 g (SE 0.11) at 15 g/L NaCl). The R:S ratio of P. pratensis was reduced by salinity, but not for P. nuttalliana. Competitive importance of both species was reduced by clipping and by salinity, but the effect was greater and more consistent for P. pratensis. We conclude that salt concentration reduces plant growth and the effect of competition.  相似文献   

15.
16.
Eryngium maritimum L. is a valuable medicinal species, but since it is protected plant, collection from natural populations is forbidden. Therefore, establishing an efficient system for micropropagation of this species is desirable. To determine the optimal nutritional factors needed for shoot multiplication, root development and secondary metabolites accumulation, different media and plant growth regulators were tested. The highest plant regeneration efficiency (over 96 %), with 4.4 shoots per explant was induced on Murashige and Skoog (MS) medium supplemented with 1.0 mg L?1 benzyladenine (BA) and 0.1 mg L?1 indole-3-acetic acid (IAA). The in vitro-regenerated shoots were rooted (83.3–100 %) and transferred to an experimental plot with 62 % efficiency. Flow cytometric analysis revealed no variation in nuclear DNA content in field- and in vitro-delivered plant material. Ultra high performance liquid chromatography (UHPLC) indicated that multiple shoots and roots from in vitro-regenerated plantlets and adventitious root cultures maintained the production of rosmarinic (RA) and chlorogenic (CGA) acids and triterpenoid saponins found in the rosette leaves and roots of E. maritimum intact plants. UHPLC revealed a 12-fold increase of RA and CGA and 3.2-fold higher accumulation of triterpenoid saponins in roots of in vitro-derived plantlets in comparison to roots from field-grown plants. Adventitious root cultures allowed continuous growth of excised root in liquid media with or without exogenous auxins. The roots grown in liquid medium supplemented with 0.1 mg L?1 IAA showed higher (227-fold) phenolic acids accumulation than those without auxin. Obtained results confirmed that micropropagation is a useful strategy in the protection of endangered species and a renewable source of a high quality plant material for secondary metabolites production.  相似文献   

17.
Control of xylem Na+ loading has often been named as the essential component of salinity tolerance mechanism. However, it is less clear to what extent the difference in this trait may determine differential salinity tolerance between species. In this study, barley (Hordeum vulgare L. cv. CM72) and rice (Oryza sativa L. cv. Dongjin) plants were grown under two levels of salinity. Na+ and K+ concentrations in the xylem sap, and shoot and root tissues were measured at different time points after stress onset. Salt‐exposed rice plants prevented xylem Na+ loading for several days, but failed to control this process in the longer term, ultimately resulting in a massive Na+ shoot loading. Barley plants quickly increased xylem Na+ concentration and its delivery to the shoot (most likely for the purpose of osmotic adjustment) but were able to reduce this process later on, keeping most of accumulated Na+ in the root, thus maintaining non‐toxic shoot Na+ level. Rice plants increased shoot K+ concentration, while barley plants maintained higher root K+ concentration. Control of xylem Na+ loading is remarkably different between rice and barley; this difference may differentiate the extent of the salinity tolerance between species. This trait should be investigated in more detail to be used in the breeding programs aimed to improve salinity tolerance in crops.  相似文献   

18.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

19.
A rhizobox experiment was conducted to examine the P acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P-deficient conditions. We aimed to identify whether cotton is physiologically efficient at acquiring P through release of protons, phosphatases or carboxylates. Plants were pre-grown in the upper compartment of rhizoboxes filled with a sand and soil mixture to create a dense root mat against a 53 μm polyester mesh. For each species, two P treatments (0 and 20 mg P kg?1) were applied to the upper compartment in order to create P-deficient and P-sufficient plants. At harvest, the upper compartment with intact plants was used for collection of root exudates while the lower soil compartment was sliced into thin layers (1 mm) parallel to the rhizoplane. Noticeable carboxylates release was only detected for white lupin. All P-deficient plants showed a capacity to acidify their rhizosphere soil to a distance of 3 mm. The activity of acid phosphatase was significantly enhanced in the soil-root interfaces of P-stressed cotton and wheat. Under P-deficient conditions, the P depletion zone of cotton from the lower soil compartment was narrowest (<2 mm) among the species. Phosphorus fractionation of the rhizosphere soil showed that P utilized by cotton mainly come from NaHCO3–Pi and NaOH–Po pools while wheat and white lupin markedly depleted NaHCO3–Pi and HCl–P pools, and the depletion zone extended to 3 mm. Wheat also depleted NaOH–Po to a significant level irrespective of P supply. The study suggests that acquisition of soil P is enhanced through P mobilization by root exudates for white lupin, and possibly proton release and extensive roots for wheat under P deficiency. In contrast, the P acquisition of cotton was associated with increased activity of phosphatases in rhizosphere soil.  相似文献   

20.

Aims

Dauciform roots (DR) are formed by some Cyperaceae under phosphorus (P) deficiency. To advance our understanding of their physiological function, I ask: Is DR formation regulated by shoot P status or external P supply? How does it respond to nitrogen (N)? Do DR enhance root monoesterase, diesterase or phytase activities and ability to utilize organic P?

Methods

Greenhouse experiments were carried out with two Carex species grown in sand with (1) different combinations of N and P supply, (2) local supply of N or P to root halves, and (3) different organic P forms.

Results

Carex flava produced DR in all treatments. The density of DR and phosphatase activities increased with N supply; they were regulated by shoot P status and external N (but not P) supply. All phosphatase activities increased with DR density. Carex muricata produced no DR and had lower diesterase activity than C. flava but both species grew equally well with diester-P.

Conclusions

DR and phosphatase activities are regulated by both N and P supply. Similar growth responses to nutrients in both species suggest small costs and benefits of DR under experimental conditions but confirmation is needed for plants grown on natural soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号