首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The killer plasmid k1 of Kluyveromyces lactis has terminal inverted repeats of 202 base pairs (bp). The left terminal repeat is contiguous to the transcribed open reading frame, ORF1, which is supposed to code for a DNA polymerase. A 266-bp fragment (called Pk1) containing most of the terminal repeat sequence was isolated and examined for promoter activity. Pk1 was fused, in either original or inversed orientation, with a promoter-less lacZ gene of E coli and a promoter-less G418 resistance gene of Tn903. These fusions were introduced into a pKD1-derived circular vector, and transformed into a lactose-negative (lac4), and a G418-sensitive K lactis host. Lac+ and G418-resistant transformants were obtained with either orientation of Pk1. The promoter activity of Pk1 fragment was independent of the presence or absence of killer plasmids. It is not known whether Pk1 can also function bidirectionally on the natural k1 plasmid. The possible functions of Pk1 for killer plasmid gene expression and plasmid replication are discussed.  相似文献   

3.
Production of the killer toxin in Kluyveromyces lactis is dependent on the presence of two linear DNA plasmids, k1 and k2. We isolated a non-killer mutant, VM5, with a modified plasmid composition. It had lost k1, but conserved k2, and acquired, in addition, three new DNA species. The new species were found to be rearranged derivatives of the k2 plasmid. One of them, pVM5-1, was made of the left terminal 4720 bp sequence of k2, including the inverted terminal repeat, and was organized as a large palindromic dimer molecule. The second, pVM5-2, was made of one strand of the pVM5-1 palindrome, folded into a hairpin structure. Like normal k2, pVM5-1 and 2 were present in a high copy number. The third species, pVM5-x, of variable size, was also a deletion product of k2, but not palindromic, and did not contain the terminal repeat. Genetic analysis showed that the presence of the palindromic derivatives appeared to destabilize the normal k2 genome, leading to gradual accumulation of plasmid-less cells.  相似文献   

4.
5.
M J Stark  A Boyd 《The EMBO journal》1986,5(8):1995-2002
The killer character of the yeast Kluyveromyces lactis is associated with the presence of the linear DNA plasmids k1 and k2 and results from the secretion of a protein toxin into the growth medium. We find that toxin activity co-purifies with three polypeptides which we have termed the alpha- (mol. wt 99,000), beta- (mol. wt 30,000) and gamma- (mol. wt 27,500) subunits. The alpha-subunit appears to contain a single asparagine-linked oligosaccharide chain but neither of the smaller subunits is glycosylated. The N-terminal amino acid sequence of each subunit has been determined. Comparison of these data with the DNA sequence of plasmid k1 indicates that it encodes all three subunits. The alpha- and beta-subunits must be processed from the primary translation product of a single gene by an enzyme related to the KEX2 endopeptidase of Saccharomyces cerevisiae.  相似文献   

6.
As in other yeasts, ARS-containing plasmids can be maintained extrachromosomally in Kluyveromyces lactis. Although some fragments of K. lactis DNA have ARS activity in both K. lactis and Saccharomyces cerevisiae, it appears that the sequences required for ARS activity in the two yeasts are different. As an approach to a better understanding of ARS structure and function in K. lactis, we analyzed the replication of the circular plasmid pKD1. We identified a 159-bp sequence able to promote autonomous replication of pKD1 in both yeasts; this fragments contains both a sequence related to the S. cerevisiae ARS consensus sequence and a region of 53% identity to the 40-bp sequence essential for K. lactis KARS101 function. By the analysis of in vivo replication intermediates we provide the first direct evidence that DNA replication initiates at or near the K. lactis ARS element. Replication terminates at the cisacting stability locus of pKD1, which functions as a replication fork barrier (RFB) and is necessary for proper plasmid segregation. RFB activity requires the pKDI gene products that are important for plasmid segregation, suggesting a link between DNA replication termination and plasmid segregation in a eukaryotic organism.  相似文献   

7.
The lactose-assimilating yeast, Kluyveromyces lactis, has been developed as a microbial host for the synthesis and secretion of human proteins. Here, we report the use of multi-copy vectors based on the 2 mu-like plasmid pKD1 from Kluyveromyces drosophilarum [Chen et al., Nucleic Acids Res. 14 (1986) 4471-4481] for the secretion of recombinant human interleukin-1 beta (reIL-1 beta). High levels of reIL-1 beta were secreted into the growth medium when the structural gene was fused in-frame to a synthetic secretion signal derived from the 'pre'-region of the K. lactis killer toxin. N-terminal sequencing of the excreted protein showed highly efficient (greater than 95%) maturation of the signal sequence. Synthesis as prepro-IL-1 beta, the 'pro'-sequence being derived from the human serum albumin-encoding gene, resulted in equally efficient secretion of mature IL-1 beta. Cytoplasmic production of Met-IL-1 beta, without a secretion signal, was found to be toxic to K. lactis. As in Saccharomyces cerevisiae [Baldari et al., EMBO J. 6 (1987) 229-234], but unlike native human IL-1 beta, K. lactis reIL-1 beta is glycosylated. This glycosylation led to a 95% loss of its biological activity. Removal of the carbohydrate chains by endo-beta-N-acetyl-glucosamidase H treatment fully restored the biological activity. A modified form of IL-1 beta (Asn7----Gln7), in which the unique site for Asn-linked glycosylation was deleted, exhibited the same biological activity as native IL-1 beta. The level of secretion of mature recombinant IL-1 beta ws glycosylation-independent.  相似文献   

8.
A new plasmid was found in the yeast Kluyveromyces waltii. This high-copy-number plasmid, named pKW1, is a double-stranded circular DNA plasmid of 5619 bp. It has several features characteristic of the 2 mu-type plasmids: presence of two inverted repeats and four open reading frames, as well as the interconversion of two isomeric forms. However, the nucleotide sequence shows little homology with known yeast plasmids. An ARS function was localized within a segment of 545 bp near one of the inverted repeats. Chimeric plasmids carrying this segment efficiently transformed K. waltii. A strain of K. waltii cured of the plasmid (cir degree) was also obtained. In the pKW1 sequence, a functionally neutral region was found at which foreign DNA can be inserted with little effect on plasmid stability. Such constructions carrying the full sequence of pKW1 replicated autonomously in a cir degree host and were particularly stable. pKW1-derived full-sequence plasmids also transformed K. thermotolerans, but not K. lactis.  相似文献   

9.
Genome organization of the killer plasmid pGK12 from Kluyveromyces lactis.   总被引:13,自引:8,他引:5  
  相似文献   

10.
The k1 and k2 linear DNA plasmids of Kluveromyces lactis replicate in the cytoplasm under the control of plasmid-encoded genes. These plasmids can also replicate autonomously in the cytoplasm of mitochondrial DNA-deficient strains of Saccharomyces cerevisiae. Essential for replication are plasmid-specific terminal inverted repeats (TIRs) to which a terminal protein (TP) is attached at the 5' ends. A plasmid was constructed with k2 TIRs in opposite orientations and with a selectable marker (URA3) under the control of k1UCS2 (upstream conserved sequence 2, the promoter of k1 open reading frame 2) in between the TIRs. Transformation of k1- and k2-containing S. cerevisiae with a fragment generated by releasing the TIR-flanked fragment from the plasmid by restriction digestion was very efficient, despite the absence of a TP. Transformation was also achieved with a fragment generated by PCR. Southern blotting demonstrated that transformants contained multiple copies of DNA fragments with the same size as the transforming DNA, supporting the hypothesis that these were replicating linear mini-chromosomes. The high frequency of transformation strongly suggests that these mini-chromosomes readily replicate supported by k2. Derivatives with a heterologous gene, firefly luciferase (LUC), expressed luciferase at high levels provided the gene was adjacent to a cytoplasmic plasmid promoter (k2UCS5).  相似文献   

11.
KEX1 is a chromosomal gene required for the production of the killer toxin encoded by the linear DNA plasmid pGKL-1 of Kluyveromyces lactis. The nucleotide sequence of the cloned KEX1 gene has been determined. The deduced structure of the KEX1 protein, 700 amino acids long, indicated that it contained an internal domain with a striking homology to the sequences of the subtilisin-type proteinases, and a probable transmembrane domain near the carboxyl terminus. The results confirm the hypothesis that the product of the gene KEX1 of K. lactis is a proteinase involved in the processing of the toxin precursor.  相似文献   

12.
The nucleotide sequence of the Lactococcus lactis broad-host-range plasmid pWVO1, replicating in both gram-positive and gram-negative bacteria, was determined. This analysis revealed four open reading frames (ORFs). ORF A appeared to encode a trans-acting 26.8-kDa protein (RepA), necessary for replication. The ORF C product was assumed to play a regulatory role in replication. Both RepA and the ORF C product showed substantial sequence similarity with the Rep proteins of the streptococcal plasmid pLS1. In addition, the plus origin of replication was identified on the basis of strong similarity with the plus origin of pLS1. Derivatives of pWVO1 produced single-stranded (ss) DNA in Bacillus subtilis and L. lactis, suggesting that this plasmid uses the rolling-circle mode of replication. In B. subtilis, but not in L. lactis, the addition of rifampicin resulted in increased levels of ssDNA, indicating that in the former organism the host-encoded RNA polymerase is involved in the conversion of the ssDNA to double-stranded plasmid DNA (dsDNA). Apparently, in L. lactis the conversion of ss to ds pWVO1 DNA occurs by a mechanism which does not require the host RNA polymerase.  相似文献   

13.
The linear DNA killer plasmids (pGKL1 and pGKL2) isolated from a Kluyveromyces lactis killer strain are also maintained and expressed its killer character in Saccharomyces cerevisiae. After these killer plasmid DNAs isolated from S. cerevisiae were treated with alkali, four terminal fragments from each plasmid DNAs were cloned separately. Using these and other cloned DNA fragments, the terminal nucleotide sequences of pGKL2 and the complete nucleotide sequence of pGKL1 were determined. The inverted terminal repetitions of 202 bp and 182 bp were found in pGKL1 and pGKL2, respectively. The pGKL1 sequence showed an extremely high A + T content of 73.2% and it contained five large open reading frames. The largest of these open reading frame was suggested to code for a membrane-bound precursor of glycoprotein subunit of the killer toxin.  相似文献   

14.
A novel killer toxin, encoded by a double-stranded linear DNA plasmid pGK l-1 (5.4 MDa) in Kluyveromyces lactis IFO 1267 was purified 320 000-fold from the culture broth of yeast. The toxin was obtained in an electrophoretically homogeneous state with a yield of 24% by hydroxyapatite column chromatography, chromatofocusing and polyacrylamide gel electrophoresis. The purified toxin was dissociated into two subunits with molecular masses of 27 kDa and above 80 kDa, as estimated by Laemmli's sodium dodecylsulfate gel electrophoresis; the exact composition ratio of the two subunits remains unestablished. The isoelectric point was between 4.4 and 4.8. As compared with the reported narrow pH range of action and instability of k1 killer toxin encoded by a double-stranded RNA plasmid of Saccharomyces cerevisiae, the K. Lactis toxin was effective with sensitive strains of S. cerevisiae in a relatively wider pH range between 4 and 8; it was stable for several months at pH 6.0 when stored below -20 degrees C. In contrast to the simple protein nature of the k1 killer toxin with a molecular mass of 11.47 kDa, the K. lactis toxin maintained a mannoprotein nature, as it was absorbed by a ConA-Sepharose column and eluted by methyl alpha-D-mannoside. The growth inhibitory activity of K. lactis toxin was enhanced 2-35-fold by the presence of 4-60% glycerol.  相似文献   

15.
D C Huang  M Novel  X F Huang  G Novel 《Gene》1992,118(1):39-46
The nucleotide sequence of an insertion sequence (IS) observed during mating experiments using the lactose-protease plasmid, pUCL22, of Lactococcus (Lc.) lactis subsp. lactis CNRZ270, was found to be similar to that of ISS1 from Lc. lactis subsp. lactis ML3. The IS was named ISS1RS. The chromosome of this strain contains several copies of ISS1-like IS as assessed by hybridization. One of these copies was cloned and named ISS1CH. Its sequence differs from that of the plasmid-borne copy, and appears to be more closely related to ISS1N from Lc. lactis subsp. cremoris SK11. This suggests independent introduction of both ISS1 elements. Moreover, the observation of plasmid genes integrated in the CNRZ270 chromosome near ISS1CH suggests that their presence is the result of integration by a Campbell mechanism using both IS homologies. ISS1-like sequences were also found on plasmids of numerous Lc. lactis strains, as well as one out of seven Lactobacillus (Lb.) casei and one out of three Lb. plantarum strains examined.  相似文献   

16.
The first report of the complete nucleotide sequence of a cryptic plasmid from Lactobacillus delbrueckii subsp. bulgaricus (Lactobacillus bulgaricus) is presented. The plasmid pLBB1 consists of 6127 bp with a GC content of 44.8%. No ssDNA was detected by hybridization experiments, which is consistent with the notion that pLBB1 does not replicate by a rolling circle mechanism. A putative replication region of pLBB1 was cloned and found to be functional in Lactobacillus johnsonii and Lactococcus lactis. Plasmid pLBB1 showed significant DNA sequence identity with plasmid pLL1212 from Lactobacillus delbrueckii subsp. lactis (Lactobacillus lactis) CRL1212 (GenBank accession No. AF109691). Four open reading frames (ORFs) larger than 100 amino acids were identified. ORFA shared similarity with a putative primase-helicase system, and ORFB and ORFC exhibited limited identity with a mobilization protein and a transposase, respectively. Curing experiments did not allowed us to assign a function to the ORFs.  相似文献   

17.
The complete sequence of the 10.9-kbp bacteriocinogenic plasmid pBL1 from Lactococcus lactis subsp. lactis IPLA 972 has been determined. Thirteen ORFs were encountered, of which 5 were incomplete. pBL1 proved to be a narrow-host-range plasmid which replicates neither in Bacilus subtilis nor in Lactobacillus spp. The structural organization of the pBL1 replication region was highly similar to other well-known theta-replicating plasmids of lactococci, at both the untranslated (the replication origin) and the translated (repB and orfX) sequences. As in other plasmids, the product of orfX was not necessary for plasmid replication. However, it was shown to be involved in plasmid stability. Three genes organized in an operon-like structure encompassed, most likely, the bacteriocin-encoding region. Upstream of the origin of replication a nicking site (oriT) was found. This oriT sequence proved to be functional by mobilization of plasmids wearing it. One complete and several partial IS elements were identified on pBL1.  相似文献   

18.
The Bacillus anthracis Sterne plasmid pXO1 was sequenced by random, "shotgun" cloning. A circular sequence of 181,654 bp was generated. One hundred forty-three open reading frames (ORFs) were predicted using GeneMark and GeneMark.hmm, comprising only 61% (110,817 bp) of the pXO1 DNA sequence. The overall guanine-plus-cytosine content of the plasmid is 32.5%. The most recognizable feature of the plasmid is a "pathogenicity island," defined by a 44.8-kb region that is bordered by inverted IS1627 elements at each end. This region contains the three toxin genes (cya, lef, and pagA), regulatory elements controlling the toxin genes, three germination response genes, and 19 additional ORFs. Nearly 70% of the ORFs on pXO1 do not have significant similarity to sequences available in open databases. Absent from the pXO1 sequence are homologs to genes that are typically required to drive theta replication and to maintain stability of large plasmids in Bacillus spp. Among the ORFs with a high degree of similarity to known sequences are a collection of putative transposases, resolvases, and integrases, suggesting an evolution involving lateral movement of DNA among species. Among the remaining ORFs, there are three sequences that may encode enzymes responsible for the synthesis of a polysaccharide capsule usually associated with serotype-specific virulent streptococci.  相似文献   

19.
Killer strains of Kluyveromyces lactis secrete a toxin which presumably is processed during secretion from a larger precursor. Analysis of the sequence of the K. lactis killer toxin gene predicts that the first 16 amino acids at the amino terminus of the protein should represent its leader peptide. We have tested the capability of this leader peptide to direct secretion of a protein fused to it by inserting a synthetic oligonucleotide identical to the sequence of the putative leader peptide into a yeast expression vector. Subsequently, the cDNA coding for the secreted active portion of the human interleukin 1 beta (IL-1 beta) was fused to the leader peptide sequence of the killer toxin. This construction in Saccharomyces cerevisiae is capable of directing synthesis and secretion of correctly processed IL-1 beta into the culture medium.  相似文献   

20.

Background

Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A–G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression.

Methodology/Principal Findings

Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid.

Conclusions/Significance

Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号