首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of genetic damage was investigated by culturing diploid yeastSaccharomyces cerevisiae D7 cells continuously at radiation levels ranging from 0.383 µSv/h to 1.275 mSv/h by selecting appropriate concentrations of tritiated water in the growth medium. These radiation levels correspond to 3–10000 times the natural background. Parameters such as growth kinetics, gene conversion frequency at background radiation and after a challenging dose of acute gamma-radiation or alkylating agentN-methyl-N-nitro-N-nitrosoguanidine (MNNG) were assessed. The gene conversion frequency in most of the assays was in the range of 5–10 convertants per 106 cells, as in the case of controls. However, a number of the cultures showed conversion frequencies above 20 per 106 viable cells. This stochastic phenomenon occurred more frequently in cells which were incubated at higher radiation levels and for longer durations. This suggests that radiation is responsible for the phenomenon. When subculturing continued beyond 900 h, gene conversion frequencies reverted back to normal values in all cultures in spite of elevated background radiation levels, thus suggesting an adaptive response. The generation time of the cells was 78 min in all cultures irrespective of the radiation level. The response of the cells cultured at elevated background radiation levels to subsequent challenging treatment with gamma-radiation or MNNG was identical to that of the control cultures. Our results suggest that in eukaryotic yeast, low-level radiation may induce an adaptive response to chronic radiation, whereas no such response could be detected when the cells were challenged with acute high-dose exposure or with MNNG.  相似文献   

2.
The adaptive response is an important phenomenon in radiobiology. A study of the conditions essential for the induction of an adaptive response is of critical importance to understanding the novel biological defense mechanisms against the hazardous effects of radiation. In our previous studies, the specific dose and timing of radiation for induction of an adaptive response were studied in ICR mouse fetuses. We found that exposure of the fetuses on embryonic day 11 to a priming dose of 0.3 Gy significantly suppressed prenatal death and malformation induced by a challenging dose of radiation on embryonic day 12. Since a significant dose-rate effect has been observed in a variety of radiobiological phenomena, the effect of dose rate on the effectiveness of induction of an adaptive response by a priming dose of 0.3 Gy administered to fetuses on embryonic day 11 was investigated over the range from 0.06 to 5.0 Gy/min. The occurrence of apoptosis in limb buds, incidences of prenatal death and digital defects, and postnatal mortality induced by a challenging dose of 3.5 Gy given at 1.8 Gy/min to the fetuses on embryonic day 12 were the biological end points examined. Unexpectedly, effective induction of an adaptive response was observed within two dose-rate ranges for the same dose of priming radiation, from 0.18 to 0.98 Gy/ min and from 3.5 to 4.6 Gy/min, for reduction of the detrimental effect induced by a challenging dose of 3.5 Gy. In contrast, when the priming irradiation was delivered at a dose rate outside these two ranges, no protective effect was observed, and at some dose rates elevation of detrimental effects was observed. In general, neither a normal nor a reverse dose- rate effect was found in the dose-rate range tested. These results clearly indicated that the dose rate at which the priming irradiation was delivered played a crucial role in the induction of an adaptive response. This paper provides the first evidence for the existence of two dose-rate ranges for the same dose of priming radiation to successfully induce an adaptive response in mouse fetuses.  相似文献   

3.
The ability of cells to adapt low-dose or low-dose rate radiation is well known. High-LET radiation has unique characteristics, and the data concerning low doses effects and high-LET radiation remain fragmented. In this study, we assessed in vitro the ability of low doses of X-rays to induce an adaptive response (AR) to a subsequent challenging dose of heavy-ion radiation. Lymphoblastoid cells (TK6, AHH-1, NH32) were exposed to priming 0.02-0.1Gy X-rays, followed 6h later by challenging 1Gy heavy-ion radiation (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm). Pre-exposure of p53-competent cells resulted in decreased mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and different H2AX phosphorylation kinetics, as compared to cells exposed to challenging radiation alone. This phenomenon did not seem to be linked with cell cycle effects or radiation-induced apoptosis. Taken together, our results suggested the existence of an AR to mutagenic effects of heavy-ion radiation in lymphoblastoid cells and the involvement of double-strand break repair mechanisms.  相似文献   

4.
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7–2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.  相似文献   

5.
To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual’s house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster.  相似文献   

6.
The relationship of low-dose background gamma radiation and childhood leukaemia was investigated in a number of studies. Results from these studies are inconclusive. Therefore, in the present study 25 years of German childhood cancer data were analyzed using interpolated background annual gamma dose rate per community in an ecological study. The main question was leukaemia; as exploratory questions we investigate central nervous system (CNS) tumours, thyroid carcinomas and diagnoses less likely to be related to radiation. A Poisson regression model was applied and a fractional polynomial model building procedure. As the main sensitivity analysis a community deprivation index was included as a potential confounder. It was found that outdoor background gamma annual dose rates in Germany range roughly from 0.5–1.5 mSv/a with an average of 0.817 mSv/a. No association of annual ambient gamma dose rates with leukaemia incidence was found. Amongst the exploratory analyses, a strong association was found with CNS tumour incidence [rate ratio for 1.5 vs 0.5 mSv/a: 1.35; 95% confidence interval (1.17, 1.57)]. The community level deprivation index was not a confounder. It is concluded that the present study did not confirm an association of annual outdoor ambient gamma dose rate and childhood leukaemia, corresponding to some studies and contrasting others. An association with CNS incidence was found in the exploratory analyses. As this is an ecological study no causal interpretation is possible.  相似文献   

7.
Newly developed constant-field low voltage electrophoresis (adapted for algae cells by us) was applied to quantify the induction and repair of nuclear DNA double-strand breaks, by measuring the movement of DNA out of the starting wells into the electrophoresis gel using a UV-gel scan and computer analysis of DNA-ethidium bromide fluorescense (Syngene; Gene tools). A cell-wall-less mutant strain of Chlamydomonas reinhardtii (CW15) was used; the DNA and proteins are easily accessible because of the lack of an outer cell wall. Our results showed that giving a small priming dose (50 Gy) led to a small acceleration of dsb rejoining. When the magnitude of the priming dose was progressively increased, there was a corresponding decrease in the fraction of damage remaining at 4 hours after radiation exposure (to a test dose of 500 Gy). This indicates an upregulated rejoining of dsb following exposure of cells to the priming dose, which may be related to the strong adaptive response in this organism. Protein synthesis inhibitors were found to reduce the rate of rejoining of dsb, and from earlier results are known to inhibit the adaptive response. Thus, the adaptive response is likely to be dependent on increased dsb rejoining and depends on de novo protein synthesis. The nature of these proteins has not yet been established. C. reinhardtii CW15 is an attractive model system in which to study the underlying mechanisms of the adaptive response to ionizing radiation, and its underlying link with dsb rejoining. The results are interesting both from a basic biological point of view, and as a means to further understand the response of tumour cells to radiation therapy since the adaptive response has been postulated to determine the shape of the "shoulder" region of the survival curve of cells at low doses of radiation.  相似文献   

8.
Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0015 Gy/s dose rate and observed on a regular basis for 30 days. Since almost 50% lethality was seen with 8 Gy, it was selected as the challenging dose for further studies. Irradiation of mice with conditioning doses (0.25 or 0.5 Gy) and subsequent exposure to 8 Gy caused significant increase in the survival of mice compared to irradiated control. The splitting of challenging dose did not influence the efficiency of conditioning doses (0.25 Gy and 0.5 Gy) to induce an adaptive response. However conditioning doses given in fractions (0.25 Gy + 0.25 Gy) or (0.5 Gy + 0.5 Gy) were able to modulate the response of challenging dose of 8 Gy. These results clearly showed the occurrence of adaptive response in terms of survival of animals. The conditioning dose given in small fractions seemed to be more effective. The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed  相似文献   

9.
The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs gamma rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.  相似文献   

10.
Lee YJ  Park GH  Cho HN  Cho CK  Park YM  Lee SJ  Lee YS 《Radiation research》2002,157(4):371-377
An adaptive response results in a reduced effect of a high challenging dose of a stressor after a smaller, inducing dose has been applied a few hours earlier. Radiation-induced fibrosarcoma (RIF) cells did not show an adaptive response, i.e. a reduced effect from a high challenging dose (2 Gy) of a radiation after a priming dose (1 cGy) had been applied 4 or 7 h earlier, but cells of a thermoresistant clone (TR) derived from RIF cells did. Since the expression of inducible Hspa (also known as Hsp70) and Hspb1 (also known as Hsp25) was different in these two cell lines, the role of inducible Hspa and Hspb1 in the adaptive response was examined. When RIF cells were transfected with inducible Hspa or Hspb1, both radioresistance measured by clonogenic assays and a reduction of apoptosis were detected. The adaptive response was also acquired by these two cell lines. The inducible Hspa transfectant showed a more pronounced adaptive response than the Hspb1 transfectant. Based on these results, it appears that inducible Hspa and Hspb1 are at least partly responsible for the induction of the adaptive response in these cells. Moreover, when inducible Hspa or Hspb1 was transfected into RIF cells, co-regulation of the two genes was detected. Heat-shock factor (Hsf) was found to be at least partially responsible for the induction of the adaptive response in these cells.  相似文献   

11.
Nuclear disasters at Chernobyl and Fukushima provide examples of effects of acute ionizing radiation on mutations that can affect the fitness and distribution of species. Here, we investigated the prevalence of Microbotryum lychnidis‐dioicae, a pollinator‐transmitted fungal pathogen of plants causing anther‐smut disease in Chernobyl, its viability, fertility and karyotype variation, and the accumulation of nonsynonymous mutations in its genome. We collected diseased flowers of Silene latifolia from locations ranging by more than two orders of magnitude in background radiation, from 0.05 to 21.03 μGy/h. Disease prevalence decreased significantly with increasing radiation level, possibly due to lower pollinator abundance and altered pollinator behaviour. Viability and fertility, measured as the budding rate of haploid sporidia following meiosis from the diploid teliospores, did not vary with increasing radiation levels and neither did karyotype overall structure and level of chromosomal size heterozygosity. We sequenced the genomes of twelve samples from Chernobyl and of four samples collected from uncontaminated areas and analysed alignments of 6068 predicted genes, corresponding to 1.04 × 107 base pairs. We found no dose‐dependent differences in substitution rates (neither dN, dS, nor dN/dS). Thus, we found no significant evidence of increased deleterious mutation rates at higher levels of background radiation in this plant pathogen. We even found lower levels of nonsynonymous substitution rates in contaminated areas compared to control regions, suggesting that purifying selection was stronger in contaminated than uncontaminated areas. We briefly discuss the possibilities for a mechanistic basis of radio resistance in this nonmelanized fungus.  相似文献   

12.
Acute low-dose irradiation (0.1-1 Gy, 1.33 Gy/min) of cells of a human glioblastoma cell line, A-172, induced a dose-dependent monophasic accumulation of TP53 (formerly known as p53) and CDKN1A (formerly known as WAF1). In contrast, chronic gamma irradiation (0.001 Gy/min) produced a clear biphasic response of accumulation TP53 with the first peak at 1.5 h (0.09 Gy) and the second peak at 10 h (0.54 Gy). Significantly, when the cells were preirradiated with a chronic dose of gamma irradiation for 24 h (1.44 Gy) or 50 h (3 Gy), they no longer responded to an acute challenging dose to produce a dose-dependent response of the TP53 pathway. These findings suggest that chronic irradiation at low dose rate alters the TP53-dependent signal transduction pathway. Wearing away of the TP53 pathway by chronic exposure to radiation may have important implications for radiation protection.  相似文献   

13.
The small intestine of the rat was shielded during total-body irradiation (TBI) to evaluate the effects of radiation dose and length of intestine shielded on survival. Sprague-Dawley rats were anesthetized in groups of 10. Using aseptic surgical procedures 80, 40, 20, or 10 cm, or none of the proximal or distal small intestine were temporarily exteriorized and shielded during irradiation with photons from an 18 MeV linear accelerator. Less than 17% of the dose was delivered to the shielded intestines. In unshielded animals deaths occurred from Days 4 to 6 with 13, 15, or 17 Gy and from Days 8 to 30 with 9, 11, and 12 Gy. However, in all animals exposed to 15 Gy with all or part of the small intestine shielded, survival was increased to between 5 and 9 days. Shielding of the distal small intestine was more effective in prolonging survival than shielding of the proximal small intestine. The previously identified target of radiation damage in the small intestine is the crypt stem cell. In this study, the analysis of histological specimens of shielded and irradiated small intestine suggested that humoral factors also influence intestinal histology and survival after irradiation. These humoral factors are thought to originate from the irradiated body tissues, the shielded proximal intestine, and the shielded distal intestine. Further studies are required to identify these factors and to determine their mode of action and their therapeutic potential after radiation damage to the small intestine.  相似文献   

14.
In this work, we used the Monte Carlo-based Geant4 simulation toolkit to calculate the ambient dose equivalents due to the secondary neutron field produced in a new projected proton therapy facility. In particular the facility geometry was modeled in Geant4 based on the CAD design. Proton beams were originated with an energy of 250 MeV in the gantry rooms with different angles with respect to the patient; a fixed 250 MeV proton beam was also modeled. The ambient dose equivalent was calculated in several locations of interest inside and outside the facility, for different scenarios. The simulation results were compared qualitatively to previous work on an existing facility bearing some similarities with the design under study, showing that the ambient dose equivalent ranges obtained are reasonable. The ambient dose equivalents, calculated by means of the Geant4 simulation, were compared to the Australian regulatory limits and showed that the new facility will not pose health risks for the public or staff, with a maximum equivalent dose rate equal to 7.9 mSv/y in the control rooms and maze exit areas and 1.3·10−1 mSv/y close to the walls, outside the facility, under very conservative assumptions. This work represents the first neutron shielding verification analysis of a new projected proton therapy facility and, as such, it may serve as a new source of comparison and validation for the international community, besides confirming the viability of the project from a radioprotection point of view.  相似文献   

15.
Previously we reported that yeast and Chinese hamster V79 cells cultured under reduced levels of background environmental ionizing radiation show enhanced susceptibility to damage caused by acute doses of genotoxic agents. Reduction of environmental radiation dose rate was achieved by setting up an underground laboratory at Laboratori Nazionali del Gran Sasso, central Italy. We now report on the extension of our studies to a human cell line. Human lymphoblastoid TK6 cells were maintained under identical in vitro culture conditions for six continuous months, at different environmental ionizing radiation levels. Compared to “reference” environmental radiation conditions, we found that cells cultured in the underground laboratories were more sensitive to acute exposures to radiation, as measured both at the level of DNA damage and oxidative metabolism. Our results are compatible with the hypothesis that ultra-low dose rate ionizing radiation, i.e. environmental radiation, may act as a conditioning agent in the radiation-induced adaptive response.  相似文献   

16.
A double isotope technique was used to measure changes in the vascular permeability surface area product (PS) for albumin after irradiation. PS was measured in several tissues of the rat during the first 38 days following 11, 13.5, 18, or 25 Gy whole thorax irradiation. After 18 and 25 Gy most irradiated and nonirradiated (shielded) tissues showed elevated permeability at 1 day after radiation, which declined to control levels by Day 4. All irradiated tissues showed a second wave of increased permeability between 14 and 38 days after radiation that varied in onset and extent depending upon tissue and dose. Lung and heart showed a direct response to dose between 11 and 18 Gy during this period. Peak lung values averaged three times control values at 19 days after 18 Gy. Peak heart values averaged twice control values at the same time and dose. The double isotope technique has proven to be a reliable means of quantitatively determining vascular permeability response to radiation over time.  相似文献   

17.
The phospholipid content and incorporation of L-3H-serine and 2-14C-glycerol into phospholipids of the liver, intestine and spleen were studied 48 hr after irradiation of rats with a dose of 8 Gy. The changes in the phospholipid content of the irradiated rat organs were induced by those in the individual phospholipids in the exposed body tissues. This is assumed to be a result of the adaptive reactions of the organism to the damaging effect of ionizing radiation.  相似文献   

18.
Melanin’s influence on the chromosome aberration frequency induced by radiation in human lymphocytes and mouse bone marrow cells has been studied. We revealed earlier that melanin significantly decreases the frequencies of different radiation-induced mutations in animal germ cells. Melanin protection in somatic cells has been found to be less effective. The melanin effect in somatic cells depends on radiation dose: the lower the damage level, the better the melanin protection. In order to determine the influence of melanin at low radiation doses, the adaptive response was investigated in mouse bone marrow cells in vivo. The level of chromosome aberrations in these cells after fractionated irradiation of 0.2 Gy+1.5 Gy with a 4-h interval was about half that after a single dose of 1.7 Gy. If melanin was injected prior to irradiation, the aberration level decreased by a factor of about two in both cases. This observed result may be due to the potential radioprotective effect of melanin and to the absence of any adaptive response, whereas in the case of melanin application between the priming and challenge doses, the combined effect of the adaptive response as well as melanin protection resulted in a 4-fold decrease of chromosome aberrations. These results allow us to draw the following conclusions: adaptive response can be prevented by a radioprotector such as melanin, and melanin is capable of completely removing low-dose radiation effects. Received: 2 December 1998 / Accepted in revised form: 15 September 1999  相似文献   

19.
In previous studies we have shown that low doses of radiation from incorporated tritiated thymidine can make human lymphocytes less susceptible to the genetic damage manifested as chromatid breakage induced by a subsequent high dose of X rays. We have also shown that this adaptive response to ionizing radiation can be induced by very low doses of X rays (0.01 Gy; i.e., 1 rad) delivered during S phase of the cell cycle. To see if a low dose of X rays could induce this response in cells at other phases of the cell cycle, human lymphocytes were irradiated with 0.01 or 0.05 Gy before stimulation by phytohemagglutinin (G0) or with 0.01 Gy at various times after stimulation (G1), followed by 1.5 Gy (150 rad) at G2 phase. Although G0 lymphocytes failed to exhibit an adaptive response, G1 cells irradiated as early as 4 h after stimulation did show the response. Experiments were also carried out to determine how long the adaptive response induced by 0.01 Gy could persist. A 0.01-Gy dose was delivered to lymphocytes in the first S phase, followed by 1.5 Gy in the same or subsequent cell cycles. Lymphocytes receiving a 1.5-Gy dose at 40, 48, or 66 h after stimulation exhibited an adaptive response, whereas those receiving a 1.5-Gy dose at 90 or 114 h did not. Duplicate cultures containing bromodeoxyuridine showed that at 40 h all the lymphocytes were in their first cell cycle after stimulation, at 48 h half of the lymphocytes were in their first cell cycle and half in their second, and at 66 h 80% of the lymphocytes were in their third cell cycle. Thus the adaptive response persists for at least three cell cycles after it is induced by 0.01 Gy of X rays. In other experiments, the time necessary for maximal expression of the adaptive response was determined by delivering 0.01 Gy at hourly intervals 1-6 h before the 1.5-Gy dose. While a 4-h interval was enough for expression of the adaptive response, shorter intervals were not.  相似文献   

20.
To investigate the effects of ionizing radiation on an isolated neuronal network without complicating systemic factors, slices of hippocampus from the guinea pig were isolated and studied in vitro. Slices were irradiated with a 60Co source and compared to paired, sham-irradiated controls. Electrophysiological activity in the CA 1 population of pyramidal cells was evoked by stimulation of the stratum radiatum. Analysis of the somatic and dendritic responses suggested sites of radiation damage. Orthodromically evoked activity was significantly decreased in slices receiving greater than 75 Gy gamma radiation. The effects were dose and dose-rate dependent. At 20 Gy/min, doses of 50 Gy and greater produced synaptic impairment while doses of 75 Gy and greater also produced postsynaptic damage (i.e., the ability of the synaptic response to generate an action potential). A lower dose rate, 5 Gy/min, reduced the sensitivity of synaptic damage to radiation exposure; synaptic impairment required a dose of 100 Gy or greater at the lower dose rate. In contrast, postsynaptic damage was not sensitive to dose rate. This study demonstrates that ionizing radiation can directly affect the integrated functional activity of neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号