首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moderate activity of arginine kinase was found in Steinernema carpocapsae, an entomopathogenic nematode. In the forward reaction, 4.60 and 3.12 micromol ATP/min/mg protein was produced in infectious third-stage juveniles (J3s) and adult nematodes, respectively. For the reverse reaction, 3.20 and 2.27 micromol phosphoarginine/min/mg protein was produced by J3s and adults, respectively. The K(m)s for phosphoarginine and ADP were 0.73 and 0.42 mM, respectively, in the forward reaction, whereas in the reverse reaction, the K(m)s were 0.37 and 2.35 mM for arginine and ATP, respectively, for the enzyme from J3s. The pH optimum for the forward reaction was 7.2 and 7.3 in J3s and adults, respectively. The pH optimum was elevated for the reverse reaction, 7.8 and 7.9-8.5 in J3s and adults, respectively. In the J3s, the in vitro optima for arginine kinase activity was correlated with the in vivo tissue pH in hypoxic (6.9) and aerobic (7.5) J3s estimated by in vivo flow 31P-NMR.  相似文献   

2.
L-Arginine plays an essential role in the energetic metabolism of Trypanosoma cruzi. In this work we propose a relationship between L-arginine uptake, arginine kinase activity and the parasite replication ability. In epimastigote cultures L-arginine uptake decreases continuously accompanying a cell replication rate reduction. The use of conditioned or fresh medium mimics uptake variations. Interestingly, in non-replicative trypomastigote cells, L-arginine uptake was undetectable. The association between L-arginine uptake and cell replication was demonstrated using the antimitotic agent hydroxyurea. Arginine kinase, the enzyme responsible for phosphoarginine and ATP synthesis, also shows a differential activity in epimastigote and trypomastigote parasite stages.  相似文献   

3.
Mitochondrial preparations from muscles of a crab (Cancer pagurus), two fish (Trachurus trachurus and Scyliorhinus canicula) and a bird (Columba livia) are able to synthesise, through ATP, the phosphagen related to that species. This indicates the presence of a bound phosphagen kinase. Addition of creatine kinase and creatine to crab mitochondria results in the synthesis of phosphocreatine. Similarly, the addition of arginine kinase and arginine to mitochondrial preparations from the fish and bird results in the synthesis of phosphoarginine. In the crab, the mitochondrial form of arginine kinase released by sonication had the same kinetic affinity constants and electrophoretic mobility and could not be distinguished immunologically from the cytosolic form. The close similarity of bound and cytosolic forms of arginine kinase in this crustacean suggests that the two forms have not evolved separately as has creatine kinase in the mammal.  相似文献   

4.
1. Two molecular forms of arginine kinase, AK1 and AK2 have been purified from the adductor muscle of the scallop, Pecten maximus. AK2 was retained on a DEAE-cellulose column at pH 7.5, but AK1 was not. 2. Both forms were monomeric (mol. wt. approximately 42,000) and showed the same pH optimum (7.5-8.0) in the direction of phosphoarginine synthesis. 3. AK1 had slower electrophoretic mobility at pH 8.3 towards the anode, higher lysine content, lower glutamate content, lower Km for L-arginine and higher Km for Mg(2+)-ATP than AK2. Unlike AK1, AK2 was strongly inhibited at high concentrations of Mg(2+)-ATP. 4. Both molecular forms cross-reacted with antisera raised against native as well as performic acid-oxidized lobster muscle arginine kinase. However, AK1 showed a greater affinity than AK2 to anti-lobster arginine kinase antibodies, particularly to those raised against the native enzyme.  相似文献   

5.
Arginine kinase catalyzes the transphosphorylation between phosphoarginine and ADP. Phosphoarginine is involved in temporal ATP buffering and inorganic phosphate regulation. Trypanosoma cruzi arginine kinase phosphorylates only L-arginine (specific activity 398.9 x mUE-min(-1) x mg(-1)), and is inhibited by the arginine analogs, agmatine, canavanine, nitroarginine, and homoarginine. Canavanine and homoarginine also produce a significant inhibition of the epimastigote culture growth (79.7% and 55.8%, respectively). Inhibition constants were calculated for canavanine and homoarginine (7.55 and 6.02 mM, respectively). In addition, two novel guanidino kinase activities were detected in the epimastigote soluble extract. The development of the arginine kinase inhibitors of T. cruzi could be an important feature because the phosphagens biosynthetic pathway in trypanosomatids is different from the one in their mammalian hosts.  相似文献   

6.
1. Some effects of anions on the rates of phosphoarginine synthesis by monomeric (lobster) and by dimeric (Holothuria forskali) arginine kinases are reported. 2. As with creatine kinase, acetate ions activate both enzymes: Cl- was also found to activate both although this was an inhibitor of creatine kinase. 3. NO3- inhibits the lobster enzyme. Inhibition is of the mixed type with respect to MgATP. Ki greater than Ki' and Ks greater than Ks' indicating that the presence of NO3- promotes the binding of substrate and vice versa. 4. NO3- alone has no effect on the difference spectrum of the lobster enzyme but in the presence of arginine, MgATP, MgADP, MgAMP or MgIDP the difference spectrum is greatly enhanced. A profound effect on the ionization state of tyrosine residues is inferred. 5. With the Holothuria enzyme low concentrations of NO3- activate in a manner that is competitive with arginine. Higher concentrations cause inhibition of the mixed type with respect to arginine in a similar manner to that found with MgATP for the lobster kinase. 6. Of a range of anions tested only NO3- and NO2- enhanced the inhibition of enzyme activity by MgADP, indicating the formation of a pseudo-transition-state dead-end complex, enzyme-arginine-NO3--MgADP. The effect was essentially independent of temperature with the Holothuria enzyme, but with the lobster enzyme was much less marked and temperature dependent. The difference may reflect the different stabilities of the monomer and dimer enzymes, although with neither arginine kinase is the stabilization of the dead-end complex as marked as is found with creatinine kinase.  相似文献   

7.
In response to hypoxia at PO(2) 1.3-1.7 mg/L for 6 h, the kuruma prawn Marsupenaeus (Penaeus) japonicus showed a dramatic decrease in phosphoarginine storage in muscle, with normal levels restored during 4-h post-hypoxic recovery. Large stores of muscle glycogen only decreased between 4 and 6 h during hypoxia, but greatly diminished during recovery. Muscle ATP levels and energy charge decreased only slightly under hypoxia. Lactate levels increased slightly during hypoxia and promptly returned to control levels during recovery. These data indicate that phosphoarginine works in muscle as an ATP buffer during hypoxia and glycogen is utilized as an energy source during recovery. Under hypoxia, up- and down-regulated proteins were identified after 2D electrophoresis and partial sequences were obtained after protease digestion. Fructose bisphosphate aldolase was down-regulated during hypoxia, suggesting the suppression of glycolysis under hypoxia. Several partial sequences from three protein spots up-regulated under hypoxia were all assigned to arginine kinase, suggesting the existence of several isoforms of arginine kinase in the muscle of M. japonicus. This arginine kinase up-regulation under hypoxia may indicate a provision for oxygen re-supply after anaerobiosis. This is consistent with the prompt replenishment of phosphoarginine stores during recovery from hypoxia.  相似文献   

8.
The isolation and characterization of homogeneous arginine kinase from the cockroach is reported. The purification protocol produces 6.6 mg of pure enzyme from 6.8 g of whole cockroach. The purified enzyme cross-reacts with a heterologous antibody and monoclonal antibody against arginine kinase from the shrimp. Both antibody preparations also cross-react with extracts from several species known to contain monomeric arginine kinase, but fail to react with extracts from organisms containing dimeric arginine kinase. Cockroach arginine kinase has a molecular mass of approximately 43,000 determined from measurements by gel filtration and gel electrophoresis. Compared with other arginine kinases, the enzyme from the cockroach is relatively thermostable (50% activity retained at 50 degrees C for 10 min) and has a pH optima of 8.5 and 6.5-7.5, for the forward and reverse reactions, respectively. Treatment with 5,5'dithiobis[2-nitrobenzoic acid] indicates that arginine kinase has a single reactive sulfhydryl group and, interestingly, the reaction is biphasic. The Michaelis constants for the phosphagen substrates, arginine: 0.49 mM, phosphoarginine: 0.94 mM, and nucleotide substrates MgATP: 0.14 mM, MgADP: 0.09 mM, are in the range reported for other arginine kinases. A 1% solution of pure enzyme has an absorbance of 7.0 at 280 nm. Calculations based on circular dichroic spectra indicate that arginine kinase from the cockroach has 12% alpha-helical structure. The intrinsic protein fluorescence emission maximum at 340 nm suggests that tryptophan residues are below the surface of the protein and not exposed to solvent. Arginine kinase from the cockroach and shrimp are known to be deleterious immunogens towards humans. The availability of pure protein, its characterization and potential regulation of activity, will be useful in developing agents to control the cockroach population and its destructive role in agriculture and human health.  相似文献   

9.
The phosphoarginine shuttle system effectively regenerates ATP in the cilia of Paramecium caudatum. To estimate the effective concentration of ATP‐regenerating enzymes, we attempted to reconstitute certain ATP‐regenerating systems within the cilia of intact cortical sheets using exogenous enzymes and high‐energy substances. The addition of phosphoenolpyruvate, which is one of the substrates in glycolysis, did not increase the ciliary beat frequency, whereas phosphocreatine together with exogenous creatine kinase, effectively increased the ciliary beat frequency. In the presence of 0.6 mg/ml creatine kinase and 0.4 mM phosphocreatine, the ciliary beat frequency was comparable to that produced by the addition of phosphoarginine. This result indicates that the reconstituted phosphocreatine shuttle system can work as an artificial ATP‐regenerating system for ciliary movements. The effective concentration of creatine kinase in the reconstituted phosphocreatine shuttle system was estimated to be about 7.4 μM based on the molecular mass of creatine kinase (MW 81,000). Therefore, the effective concentration of arginine kinase in the cilia of live Paramecium is approximately 10 μM. This estimated concentration of intraciliary arginine kinase is sufficient to maintain a high ATP concentration throughout the cilia of P. caudatum.  相似文献   

10.
Phosphagen kinase systems provide different advantages to tissues with high and fluctuating energy demands, in particular an efficient energy buffering system. In this study we show for the first time functional expression of two phosphagen kinase systems in Saccharomyces cerevisiae, which does not normally contain such systems. First, to establish the creatine kinase system, in addition to overexpressing creatine kinase isoenzymes, we had to install the biosynthesis pathway of creatine by co-overexpression of L-arginine:glycine amidinotransferase and guanidinoacetate methyltransferase. Although we could achieve considerable creatine kinase activity, together with more than 3 mM intracellular creatine, this was not sufficient to confer an obvious advantage to the yeast under the specific stress conditions examined here. Second, using arginine kinase, we successfully installed an intracellular phosphagen pool of about 5 mM phosphoarginine. Such arginine kinase-expressing yeast showed improved resistance under two stress challenges that drain cellular energy, which were transient pH reduction and starvation. Although transient starvation led to 50% reduced intracellular ATP concentrations in wild-type yeast, arginine kinase overexpression stabilized the ATP pool at the pre-stress level. Thus, our results demonstrate that temporal energy buffering is an intrinsic property of phosphagen kinases that can be transferred to phylogenetically very distant organisms.  相似文献   

11.
Acid stress in Escherichia coli involves a complex resource- and energy-consuming response mechanism. By overexpression of arginine kinase from Limulus polyphemus in E. coli, we improved the recovery from a transient pH stress. While wild type E. coli resumed growth after a transient pH reduction to pH 3 for 1 h with a rate that was 25% lower than before the stress, the arginine kinase expressing strain continued to grow as rapidly as before. This effect is presumably caused by the physiological function of arginine kinase as a short term energy buffer in the form of phosphoarginine, but a pH-buffering effect cannot be excluded.  相似文献   

12.
IgE recognition of indoor allergens represents a major cause of allergic asthma in atopic individuals. We found that 52 of 102 patients suffering from allergic symptoms indoors contained IgE Abs against allergens from the Indianmeal moth (Plodia interpunctella), a ubiquitous food pest. Using serum IgE from a moth-sensitized patient we screened an expression cDNA library constructed from P. interpunctella larvae. cDNAs coding for arginine kinase (EC 2.7.3.3), a 40-kDa enzyme commonly occurring in invertebrates that is involved in the storage of such high-energy phosphate bonds as phosphoarginine, were isolated. Recombinant moth arginine kinase, designated Plo i 1, was expressed in Escherichia coli as a histidine-tagged protein with enzymatic activity, and purified to homogeneity by nickel chelate affinity chromatography. Purified recombinant arginine kinase induced specific basophil histamine release and immediate as well as late-phase skin reactions. It reacted with serum IgE from 13 of the 52 (25%) moth-allergic patients and inhibited the binding of allergic patients' IgE to an immunologically related 40-kDa allergen present in house dust mite, cockroach, king prawn, lobster, and mussel. Our results indicate that arginine kinases represent a new class of cross-reactive invertebrate pan-allergens. Recombinant arginine kinase may be used to identify a group of polysensitized indoor allergic patients and for immunotherapy of these individuals.  相似文献   

13.
Phosphagen energy-buffering systems play an essential role in regulating the cellular energy homeostasis in periods of high-energy demand or energy supply fluctuations. Here we describe the phosphoarginine/arginine kinase system of the kinetoplastid parasite Trypanosoma brucei, consisting of three highly similar arginine kinase isoforms (TbAK1-3). Immunofluorescence microscopy using myc-tagged protein versions revealed that each isoform is located in a specific subcellular compartment: TbAK1 is exclusively found in the flagellum, TbAK2 in the glycosome, and TbAK3 in the cytosol of T. brucei. The flagellar location of TbAK1 is dependent on a 22 amino acid long N-terminal sequence, which is sufficient for targeting a GFP-fusion protein to the trypanosome flagellum. The glycosomal location of TbAK2 is in agreement with the presence of a conserved peroxisomal targeting signal, the C-terminal tripeptide ‘SNL’. TbAK3 lacks any apparent targeting sequences and is accordingly located in the cytosol of the parasite. Northern blot analysis indicated that each TbAK isoform is differentially expressed in bloodstream and procyclic forms of T. brucei, while the total cellular arginine kinase activity was 3-fold higher in bloodstream form trypanosomes. These results suggest a substantial change in the temporal and spatial energy requirements during parasite differentiation. Increased arginine kinase activity improved growth of procyclic form T. brucei during oxidative challenges with hydrogen peroxide. Elimination of the total cellular arginine kinase activity by RNA interference significantly decreased growth (>90%) of procyclic form T. brucei under standard culture conditions and was lethal for this life cycle stage in the presence of hydrogen peroxide. The putative physiological roles of the different TbAK isoforms in T. brucei are further discussed.  相似文献   

14.
Phytomonas are trypanosomatid plant parasites closely related to parasites that cause several human diseases. Little is known about the biology of these organisms including aspects of their metabolism. Arginine kinase (E.C. 2.7.3.3) is a phosphotransferase which catalyzes the interconversion between the phosphagen phosphoarginine and ATP. This enzyme is present in some invertebrates and is a homolog of another widely distributed phosphosphagen kinase, creatine kinase. In this work, a single canonical arginine kinase isoform was detected in Phytomonas Jma by enzymatic activity assays, PCR, and Western Blot. This arginine kinase is very similar to the canonical isoforms found in T. cruzi and T. brucei, presenting about 70% of amino acid sequence identity and a very similar molecular weight (40kDa). The Phytomonas phosphagen system seems to be very similar to T. cruzi, which has only one isoform, or T. brucei (three isoforms); establishing a difference with other trypanosomatids, such as Leishmania, which completely lacks phosphagen kinases, probably by the presence of the arginine-consuming enzyme, arginase. Finally, phylogenetic analysis suggests that Kinetoplastids' arginine kinase was acquired, during evolution, from the arthropod vectors by horizontal gene transfer.  相似文献   

15.
Arginine kinase catalyzes the reversible transphosphorylation between adenosine diphosphate (ADP) and phosphoarginine, which is involved in temporal and spatial adenosine triphosphate (ATP) buffering. Here we demonstrate that the homologous overexpression of the Trypanosoma cruzi arginine kinase improves the ability of the transfectant cells to grow and resist nutritional and pH stress conditions. The stable transfected parasites showed an increased cell density since day 10 of culture, when the carbon sources became scarce, which resulted 2.5-fold higher than the control group on day 28. Additional stress conditions were also tested. We propose that arginine kinase is involved in the adaptation of the parasite to environmental changes.  相似文献   

16.
The collagen contents of a selected group of animals have been determined and considered in relation to a hypothesis that animals which changed from phosphoarginine to other phosphagens had a selective advantage in converting arginine to proline for the synthesis of connective tissue.  相似文献   

17.
Arginine kinase (AK) catalyzes the reversible phosphorylation of arginine by ATP, yielding the phosphoarginine. In this research, six conserved residues located on the intra-subunit domain-domain interfaces were mutated to explore their roles in the activity and structural stability of dimer AK. The mutations D69A, E70A, E71A and F80A led to pronounced loss of AK activity and structural stability. Although the mutations V75A and F76A had little effect on AK activity and structure, they caused gradually decreased the stability and reactivation of dimer AK. Our results suggested that the mutations might affect the correct positioning of the N-loop and C-loop thus disrupted the efficient recognition and interactions between the N-terminal domain and C-terminal domain which may influence the compact dimer structure, and result in decreased activity and structural stability.  相似文献   

18.
19.
Arginine kinases catalyze the reversible transfer of a high-energy phosphoryl group from ATP to l-arginine to form phosphoarginine, which is used as an energy buffer in insects, crustaceans, and some unicellular organisms. It plays an analogous role to that of phosphocreatine in vertebrates. Recently, putative arginine kinases were identified in several bacterial species, including the social Gram-negative soil bacterium Myxococcus xanthus. It is still unclear what role these proteins play in bacteria and whether they have evolved to acquire novel functions in the species in which they are found. In this study, we biochemically purified and characterized a putative M. xanthus arginine kinase, Ark, and demonstrated that it has retained the ability to catalyze the phosphorylation of arginine by using ATP. We also constructed a null mutation in the ark gene and demonstrated its role in both certain stress responses and development.  相似文献   

20.
Improved methods of separation, identification and determination of phosphagens have been applied to the study of monosubstituted guanidines and phosphagenes in sea urchin eggs, before and after fertilization. We have been able not only to identify in these materials phosphoarginine, but also phosphocreatine and to detect an unknown phosphagen. After fertilization, free arginine and creatine decrease, within respect to unfertilized eggs, whereas phosphocreatine undergoes a large increase; phosphoarginine remains almost constant, and an unknown phosphagen appears. These observations allow to interprete the results of some authors, who, applyng less refined methods, found only an increase in phosphoarginine in the same materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号